
Comp 790-184:
Hardware Security and Side-Channels

Lecture 2: Practical Cache Attacks
January 23, 2024
Andrew Kwong

Adapted from Mengjia Yan’s slides (shd.mit.edu)

Today’s Class

• How caches work
• How caches can be used for side-channels
• What cache side-channels can accomplish
• General background on caches

2

Caching 101

3

Why Cache?

• Large attack surface. Shared across cores/sockets.

• Fast. Can be used to build high-bandwidth channels

• Many states. Can encode secrets spatially to further improve bandwidth
and precision.

• There exist many cache-like structures. The same attack concepts and
tricks will apply.

The Goal:
Monitor access patterns at cache line granularity

Leak Crypto Library #1: RSA

• Square-and-Multiply Exponentiation

Input :
base b
modulo m
exponent e = (en−1 ...e0)2

Output:
be mod m

r = 1

for i = n-1 to 0 do

r = sqr(r)

r = mod(r, m)

if ei == 1 then

r = mul(r, b)

end

end

r = mod(r, m)

Leak Crypto Algorithm #2: AES

• AES implementations can use table
lookups
• S-Box substitutions
• T-tables

Keystroke Extraction

8

• Keystroke cadence yields
keystroke extraction

• Monitor cacheline that
updates the output display
• Victim will touch cache

every time he types a
character

Covert Channel

• Two processes can
communicate over cache
covert channel

• Useful for Spectre!

9

How can attacker monitor cacheline usage?

Attack Strategy #1: Flush+Reload

• The flush instructions allow explicit control of cache states
• In X86, clflush vaddr
• In ARM, DC CIVAC vaddr

• What are these flush instructions used for except for attacks?
• For coherence, in the case when the data in the cache is inconsistent

with the data in the DRAM.

Flush+Reload

Cache

Victim Attacker
A shared cache line
(latency reveals presence in cache)

Time

DRAM

Attacker:
Flush

Victim:
Access

Attacker:
Flush

Victim:
No Access

Attacker:
Reload -> LOW
latency

Attacker:
Reload ->
HIGH latency

Some possible outcomes

13

Timing Code

lfence

mfence

rdtsc

mov %eax, %edi
mov (<vaddr>), %rsi

lfence

rdtsc

sub %edi, %eax

In x86, 8 GPR:
• rax, rbx, rcx, rdx
• rsp, rbp
• rsi, rdi
“r” means 64-bit
replacing “r” with “e” means the lower 32 bits.

rdtsc:
• Read Time-Stamp Counter
• edx:eax := TimeStampCounter;

lfence:
• Load Fence
• Performs a serializing operation on all load instructions

Attack Strategy #2: ?

• Cache state manipulation instructions
• In X86, clflush vaddr
• In ARM, DC CIVAC vaddr

• What if these instructions are not available in user space?
• Apple devices
• “Except ARMv8-A CPUs, ARM processors do not support a flush

instruction”
• Flush instructions removed from Chrome’s NaCL after

Rowhammer from ARMageddon: Cache Attacks on Mobile Devices (USENIX’16)

Attack Strategy #2: Evict+Reload

Cache

Victim Attacker
A shared cache line

DRAM

Time

Attacker:
Access
a large
buffer

Victim:
Access

Attacker:
access
a large
buffer

Victim:
No Access

Attacker:
Reload -> LOW
latency

Attacker:
Reload ->
HIGH latency

Lessons Learnt So Far

The fundamental problem:
shared memory between
different security domains.

Source: https://kb.vmware.com/s/article/2080735

• flush+reload
• Requires “flush” instruction

• Evict+reload
• Doesn’t require “flush”
• Timing required

• Can’t fully mitigate

Attack Strategy #3: Prime+Probe

Victim Attacker

Time

DRAM

Attacker:
Prime a
cache set

Victim:
Access

Sender’s line

Receiver’s line

ways

Cache Set

Attack Strategy #3: Prime+Probe

Victim Attacker

Time

DRAM

Attacker:
Prime a
cache set

Victim:
Access

Sender’s line

Receiver’s line

Attack Strategy #3: Prime+Probe

Cache

Victim Attacker

Time

DRAM

Attacker:
Prime a
cache set

Victim:
Access

Sender’s line

Receiver’s line

Attacker:
Probe ->

high latency

Attack Strategy #3: Prime+Probe

Cache

Victim Attacker

Time

DRAM

Attacker:
Prime a
cache set

Victim:
Access

Victim:
No Access

Attacker:
Prime a
cache set

Sender’s line

Receiver’s line

Attacker:
Probe ->

high latency

Attacker:
Probe ->

low latency

More Cache Background

Address Translation (4KB page)

Physical Address (32bit):

Virtual Address (48bit):

48 12 11 0

Virtual page number (VPN) Page offset
(12 bits)

31 12 11 0

Physical page number (PPN) Page offset
(12 bits)

Page
Table Copy

page offset

8

N-way Set-Associative Cache

• Does cache use virtual address or physical address?

Tag Data Tag DataTag Data Tag Data
8

se
ts

4 ways

=? =? =? =?

INCOMING ADDRESS

Tag Index

SET

WAY

Using Caches with Virtual Memory

Cache TLBCPU
Main

memory

Physically-Addressed Cache

• Avoids stale cache data after context
switch

• SLOW: virtualphysical translation
before every cache access

Virtually-Addressed Cache

• FAST: No virtualphysical translation on
cache hits

• Problem: Must flush cache after context
switch

CacheTLBCPU
Main

memory

Best of Both Worlds (L1 Cache):
Virtually-Indexed, Physically-Tagged Cache (VIPT)

Cache

CPU Main
memory

TLB

Cache index comes entirely from address bits
in page offset – don’t need to wait for TLB to
start cache lookup!

Using Huge Pages

• Huge page size: 2MB or 1GB

Virtual Address :
4KB page

48 12 11 0

Virtual page number Page offset
(12 bits)

48 21 20 0

Virtual page number Page offset
(21 bits)

Virtual Address :
2MB page

Tag Set
Ind

ex

(8
bits

)

Line
offset

(6

bits)

Cache mapping:
(256 sets)

23

Takeaways

• Practical challenges in implementing a reliable cache attack
• Page sharing
• Noise due to prefetchers
• Uncertainty due to page mapping
• Replacement policy
• Etc.

• Hardware and software optimizations make attacks easier
• Transparent page sharing
• Copy-on-write
• Huge pages
• Virtually-indexed and physically-tagged caches

24

	Comp 790-184:�Hardware Security and Side-Channels��
	Today’s Class
	Caching 101
	Why Cache?
	The Goal:�Monitor access patterns at cache line granularity
	Leak Crypto Library #1: RSA
	Leak Crypto Algorithm #2: AES
	Keystroke Extraction
	Covert Channel
	How can attacker monitor cacheline usage?
	Attack Strategy #1: Flush+Reload
	Flush+Reload
	Some possible outcomes
	Timing Code
	Attack Strategy #2: ?
	Attack Strategy #2: Evict+Reload
	Lessons Learnt So Far
	Attack Strategy #3: Prime+Probe
	Attack Strategy #3: Prime+Probe
	Attack Strategy #3: Prime+Probe
	Attack Strategy #3: Prime+Probe
	More Cache Background
	Address Translation (4KB page)
	N-way Set-Associative Cache
	Using Caches with Virtual Memory
	Best of Both Worlds (L1 Cache):
Virtually-Indexed, Physically-Tagged Cache (VIPT)
	Using Huge Pages
	Takeaways
	End slide

