Comp 790-184:
Hardware Security and Side-Channels

Adapted from Mengjia Yan'’s slides (shd.mit.edu)

Today’s Class

How caches work

How caches can be used for side-channels
What cache side-channels can accomplish
General background on caches

Caching 101

J915€

J3||ews

CPU
Registers

L2 Cache

L3 Cache

Disk Storage

Why Cache?

* Large attack surface. Shared across cores/sockets.

* Fast. Can be used to build high-bandwidth channels

* Many states. Can encode secrets spatially to further improve bandwidth
and precision.

* There exist many cache-like structures. The same attack concepts and
tricks will apply.

The Goal:
Monitor access patterns at cache line granularity

Leak Crypto Library #1: RSA

e Square-and-Multiply Exponentiation | . _ 4

for 1 = n-1 to © do

Input : r = sqr(r)
base b r = mod(r, m)
modulom if ey == 1 then

r = mul(r, b)

exponent e = (e,_; ...)2 r = mod(r, m)

Output: end

end

be mod m

Leak Crypto Algorithm #2: AES

* AES implementations can use table
lookups 80

e S-Box substitutions 3

e T-tables 80

Keystroke Extraction

Time Between Adjacent Keystrokes vs. Key Typed

* Keystroke cadence vyields
keystroke extraction
* Monitor cacheline that
updates the output display
* Victim will touch cache
every time he types a
character

et
]

=
-]

o
wn

@ Trial 1
B Trial 2
m OTrial 3
O Trial 4
| Trial 5
@ Trial 6
| Trial 7
OTrial 8

e
w

o
o

Time Between Adjacent Keystrokes (seconds)
o
e

e
o

e
=]

R] i p J [3 4 Enter

Covert Channel

 Two processes can

communicate over cache

covert channel
« Useful for Spectre!

Covert-Channel
~ HE
H
|

Processor Cache

How can attacker monitor cacheline usage?

Attack Strategy #1: Flush+Reload

* The flush instructions allow explicit control of cache states
* In X86, clflush vaddr
* In ARM, DC CIVAC vaddr

 What are these flush instructions used for except for attacks?

* For coherence, in the case when the data in the cache is inconsistent
with the data in the DRAM.

Flush+Reload

A shared cache line

Victim Attacker (latency reveals presence in cache)
Attacker:
Reload -> LOW
latency
Attacker: Victim:
Flush Access
Cache Time
Attacker: Victim:
213 Flush No Access
Reghter Attacker:
L1 Cache Reload >
L2 Cache
L3 Cache DRAM HlGH |atency
Main Memory
Disk Storage 5|2

Some possible outcomes

o
st

Victim

A ket

-attacker

M

Victim

A ker

E
[

=
F
E

3
B
Py

:

Victim

wos U AN

?

Timing Code

In x86, 8 GPR:
lfence * rax, rbx, rcx, rdx
mfence * rsp, rbp

* rsi, rdi
rdtsc “r” means 64-bit

mov %eax, %edi replacing “r” with “e” means the lower 32 bits.

mov (<vaddr>), %rsi

1fence rdtsc:
* Read Time-Stamp Counter
rdtsc « edx:eax :=TimeStampCounter;

sub %edi, %eax

lfence:
* Load Fence
* Performs a serializing operation on all load instructions

Attack Strategy #2: ?

* Cache state manipulation instructions
* In X86, clflush vaddr
* In ARM, DC CIVAC vaddr

* What if these instructions are not available in user space?

* Apple devices

* “Except ARMVv8-A CPUs, ARM processors do not support a flush
instruction”

* Flush instructions removed from Chrome’s NaCL after
ROWh ammer from ARMageddon: Cache Attacks on Mobile Devices (USENIX’16)

Attack Strategy #2: Evict+Reload

L . A shared cache line
Victim Attacker Attacker:
Attacker: Reload -> LOW
Access latency
alarge Victim:
buffer Access
Cache . Time
Attacker: Victim:
access No Access
a large
buffer Attacker:
Reload ->
HIGH latency
DRAM

Lessons Learnt So Far

* flush+reload
e Requires “flush” instruction
* Evict+reload
* Doesn’t require “flush”
e Timing required
e Can’t fully mitigate

The fundamental problem:
shared memory between
different security domains.

Source: https://kb.vmware.com/s/article/20807 35

Security considerations and
disallowing inter-Virtual Machine
Transparent Page Sharing (2080735)

Last Updated: 8/25/2021 Categories: Informational Total Views: 66593

G5 Language: mxr v suBsCRIBE (i)

Vv Details

This article acknowledges the recent academic research that leverages Transparent Page
Sharing (TPS) to gain unauthorized access to data under certain highly controlled conditions
and documents VMware’s precautionary measure of restricting TPS to individual virtual
machines by default in upcoming ESXi releases. At this time, VMware believes that the
published information disclosure due to TPS between virtual machines is impractical in a real
world deployment.

Published academic papers have demonstrated that by forcing a flush and reload of cache
memory, it is possible to measure memory timings to try and determine an AES encryption
key in use on another virtual machine running on the same physical processor of the host
server if Transparent Page Sharing is enabled between the two virtual machines. This
technique works only in a highly controlled system configured in a non-standard way that
VMware believes would not be recreated in a production environment. .

Even though VMware believes information being disclosed in real world conditions is
unrealistic, out of an abundance of caution upcoming ESXi Update releases will no longer
enable TPS between Virtual Machines by default (TPS will still be utilized within individual
VMs).

Attack Strategy #3: Prime+Probe

Victim Attacker

ways

Attacker:
Prime a Victim:
cache set AcCcess

DRAM

Time

Attack Strategy #3: Prime+Probe

Victim Attacker

Attacker:
Prime a Victim:
cache set AcCcess

. DRAM

Time

Attack Strategy #3: Prime+Probe

Victim Attacker -
Receiver’s line
Attacker: Attacker:
Prime a Ve e Probe ->
cache set Access high latency

Time

DRAM

Attack Strategy #3: Prime+Probe

Victim Attacker L
Receiver’s line
Attacker: Attacker:
Prime a Victim: Probe ->
Time
Attacker: Victim: Attacker:
Prime a No Access Probe ->
cache set low latency

DRAM

More Cache Background

Address Translation (4KB page)

48 12 11 0
Virtual Address (48bit): Virtual page number (VPN) Page offset
(12 bits)
L J
Page
Table Copy
page offset
31 12 11 0
Physical Address (32bit): Physical page number (PPN) P?f; Eifs)et
its

N-way Set-Associative Cache

* Does cache use virtual address or physical address?

INCOMING ADDRESS

I Index |:|

Tag |

Tag Data Tag Data Tag Data

Tag Data

8 sets
A

==_==] SET
o o

é \ é WAY J
‘ Y
4 ways

Using Caches with Virtual Memory

Virtually-Addressed Cache Physically-Addressed Cache
cPU Cacihe — T;TLB "l m’;ﬂ;igry l cPU i;TLB — Cacfhe "l m?;igry l
e FAST: No virtual=» physical translation on * Avoids stale cache data after context
cache hits switch
* Problem: Must flush cache after context e SLOW: virtual=>»physical translation
switch before every cache access

Best of Both Worlds (L1 Cache):
Virtually-Indexed, Physically-Tagged Cache (VIPT)

— ' : Main]
<_>| /'u | }] memory

\

Cache index comes entirely from address bits
in page offset — don’t need to wait for TLB to
start cache lookup!

Cache

Using Huge Pages

* Huge page size: 2MB or 1GB

48 12 11 0
Virtual Address :
: Page offset
4KB page Virtual page number (12 bits)
Cache mapping: Tag Set Line
(256 sets) Ind offset
ex (6
Virtual Address : (8 Sl
2MB page bits
)

Takeaways

* Practical challenges in implementing a reliable cache attack
* Page sharing
* Noise due to prefetchers

Uncertainty due to page mapping

Replacement policy

Etc.

* Hardware and software optimizations make attacks easier
* Transparent page sharing
* Copy-on-write
* Huge pages
* Virtually-indexed and physically-tagged caches

	Comp 790-184:�Hardware Security and Side-Channels��
	Today’s Class
	Caching 101
	Why Cache?
	The Goal:�Monitor access patterns at cache line granularity
	Leak Crypto Library #1: RSA
	Leak Crypto Algorithm #2: AES
	Keystroke Extraction
	Covert Channel
	How can attacker monitor cacheline usage?
	Attack Strategy #1: Flush+Reload
	Flush+Reload
	Some possible outcomes
	Timing Code
	Attack Strategy #2: ?
	Attack Strategy #2: Evict+Reload
	Lessons Learnt So Far
	Attack Strategy #3: Prime+Probe
	Attack Strategy #3: Prime+Probe
	Attack Strategy #3: Prime+Probe
	Attack Strategy #3: Prime+Probe
	More Cache Background
	Address Translation (4KB page)
	N-way Set-Associative Cache
	Using Caches with Virtual Memory
	Best of Both Worlds (L1 Cache):
Virtually-Indexed, Physically-Tagged Cache (VIPT)
	Using Huge Pages
	Takeaways
	End slide

