Comp 790-184:
Hardware Security and Side-Channels

Outline

* How to mitigate side-channel attacks
*Non-interference property

*Constant-time programming

*Constant-time under speculation

Attack Examples N
Example #2: RSA cache vulnerability

Example #1: termination time vulnerability for 1 = n-1 to @ do
r = sqr(r)
def check a0 : r = r mod n
ef check _password(input): if &, == 1 then
size = len(password); r = mul(r, b)
r = r mod n
for i in range(0,size): jnd
if (input [i] == password[i]): en

return ("error");

Example #3: Meltdown

return (“success”);

Ldl: uint8 t secret = *kernel address;

Ld2: unit8 t dummy = probe_array[secret*64];

Who to blame? Who should fix the
problem?

001077y
07
TN

ot

Software Developer's Problem

Software developers:

* Need to write software for devices with
unknown design details.

* How can | know whether the program is
secure running on different devices?

9% 99 9%
A= A= A=
SR s st U =

Hardware Designer’s Problem

001077,
oI

001077,
1019700557119%0

001077
1010700007710%3

? Hardware designer:

.o-| |-o. * Need to design processors for arbitrary

L=

O T =—0 programs.

LR Jo * How to describe what kind of programs can
°‘U° run securely on my device?

Example: Termination Time Vulnerability

e How to fixit?

def check password(input):

size = len(password);

Make the computation time independent

for i in range(0,size):
ge) from the secret (password)

if (input [i] != password[i]):
return ("error");

return (“success”);

Non-Interference Example

High: root password, etc.

o
ey
-—

\ Low: public data base,
website content

* Intuitively: not affecting

* Any sequence of low inputs will produce the same low outputs,
regardless of what the high level inputs are.

Non-Interference: A Formal Definition

* The definition of noninterference for a deterministic program P

v M1,M2,P

M1, =M2, A (MLP)->*M1' A (M2,P)—*M2

= M1,'=M2,

Non-Interference for Side Channels

* The definition of noninterference for a deterministic program P

v M1,M2,P

(O) 02
M1, =M2, A (MLP)->*M1' A (M2,P)—*M2

— 01=02

What should be included in the observation trace?

Understand the Property

v M1,M2,P def check password(input):
o1 02
M1, =M2, A (M1,P) -*M1" A (M2,P) -* M2 size = len(password);
= 01=02 . .
for i in range(@,size):

if (input [i] == password[i]):
return ("error");

Consider input as part of M

* What is M, ?

* Whatis My ?

* WhatisO ?

return (“success”);

Constant-Time Programming

* For any secret values, a program always takes the same
amount of time for the same input when executing on
the same machine, and this holds for arbitrary inputs.

Data-oblivious/Constant-time programming

* How do we deal with conditional branches/jumps?

* How do we deal with memory accesses?

* How do we deal with arithmetic operations: division,
shift/rotation, multiplication?

Your Code

Compiler

For details on real-world constant-time crypto, check this out:
https://www.bearssl.org/constanttime.html| Hardware

http://www.bearssl.org/constanttime.html

def check _password(input):

size = len(password);
for i in range(9,size):

return ("error");

return (“success”);

if (input [i] != password[i]):

def check password(input):

size = len(password);

for i in range(9,size):
if (input [i] != password[i]):
dontmatch = true;
17

return dontmatch;

def check_password(input): def check password(input):

size = len(password);

for i in range(0,size):

size = len(password);

dontmatch = false;

for i in range(9,size):

if (input [i] != password[i]): -
SRR = dontmatch [= (input [i] != password[i])

return dontmatch; return dontmatch;

Real-world Crypto Code

from libsodium cryptographic library:

for(i=0;i<n;i++)
d |=x[i] A y[il;
return (1 & ((d-1)>>8)) -1;

Compare two buffers x and y, if match, return O, otherwise, return -1.

Examples from Cauligi et al. FaCT: A DSL for Timing-Sensitive Computation. PLDI'19

Eliminate Secret-dependent Branches

* Aninstruction: cmov__

* Check the state of one or more of the status flags in the EFLAGS
register (cmovz: moves when ZF=1)
* Perform a move operation if the flags are in a specified state

* Otherwise, a move is not performed and execution continues with
the instruction following the cmov instruction

More Conditional Branches

if (secret) Potential problems:
lr‘es = f10); * What if we have nested branches?
else
roc - 'FZ() . * Whatif when secret==0, f1 is not executable, e.g.,
2 causing page fault or divide by zero?
‘ * Whatif f1 or f2 needs to write to memory, perform 10,
make system calls?

rl « f1(); » Hardware assumption: what if cmovz will be executed
r2 « f2(); as soon as the flag is known (e.g., speculative

mov r3. ri execution)?
J

test secret, secret
cmovz r3, r2
// res in r3

Memory Accesses

a = buffer|[secret]

* Performance overhead.

‘ * Techniques such as ORAM can reduce
the overhead when the buffer is large

for (i=0; i<size; i++)

{
tmp = buffer[i];
xor secret, 1 23
cmovz a, tmp

}

An Optimization

* We can reduce the redundant accesses by only accessing one byte in
each cache line.

for (i=0; i<size; i++) for (i=0; i<size; i+=64)
{ {
tmp = buffer[i]; 5
xor secret, i » tmp = buffer[index];
cmovz a, tmp xor secret, index
} cmovz a, tmp
}

OpenSSL Patches Against Timing Channel

offset
Line 0

Line 1
Line 2
Line 3
Line 4
Line 5
Line 6
Line 7
Line 8

Line 191

63 offset 0 1 2
aes Line 0 M,[0]
AP M, [127] Line 1
.. B3 Line 3

POTI M, [191] Line 5 RS M,[S]
cee M,[63] Line 6 A0 M;,[6]

XX M,[127] Line 7 M,[7]

SO i I

. . . .

.
. . .

. . . .
Me;[128] [M3[129] [M[130] EEXRIE M.:[191] [ERCRCIEN M,[191] | M,[191] [M,[191]

Fig. 1. Conventional (left) vs. scatter-gather (right) memory layout.

63
Mg

alll
Mgl2]
Mgl3]
Ml4]
Ml5]
Mg6]
Mgl7]
l-.
.

Mg[8]

Mg;[191]

Yarom et al. CacheBleed: A Timing Attack on OpenSSL Constant Time RSA.

https.//faculty.cc.qgatech.edu/~

enkin/cachebleed/index.html

CacheBleed, an attack leaks SSL
keys via L1 cache bank conflict.

25

Arithmetic Operations

Latency of Square Root Instruction

Subnormal floating point numbers o DiEren Toes o i s
160 153
si«;;||nI exponent (8 hits) ' fraction (23 bits) 4
[o]o[a]1]a]a[1]o]of o] 1] ofo]o[o] o o] o] of o] o] of o] o[o] o] o] 0 120
31 30 23 22 (bit index) s 02
S 80
3 slower
40
11 SEoR il fee
0

Normal NaN Zero Infinity Subnormal

Measured on an Intel Sandy Bridge processor.

The Problem and A Solution

A*B A*B
C*D C*D

(intended After (intended P*Q P*Q

operation) (intended transformation operation) (intended
) P @ operation) | > o (dummy I operation) (dummy
£ [next instr.] E E operation) S operation)

[next instr.]
[next instr.] [next instr.]
(a) Original (b) Transformed
(non-secure) code (secure) code

Rane et al. Secure, Precise, and Fast Floating-Point Operations on x86 Processors. USENIX’16

Constant-time ISA

* Some efforts:
* ARM Data Independent Timing (DIT)
* Intel Data Operand Independent Timing (DOIT)

ARM DIT: https://developer.arm.com/documentation/ddi0601/2020-12/AArch64-Registers/DIT--Data-Independent-Timing
Intel DOIT: https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-quidance/best-practices/data-
operand-independent-timing-isa-guidance.htm/

http://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-

Constant-time under Speculation

* What problems arise?

The Usage of Fences

Meltdown

Ldl: uint8_ t secret = *kernel_address;

Ld2: unit8 t dummy = probe array[secret*64];

Spectre vl Spectre v2
Br: if (x < size_ arrayl) { Br: jmp target // indirect jump
Ld1: secret = arrayl[x] // target = Ldl
Ld2: y = array2[secret*64]
) Ldl: secret = arrayl|[x]
Ld2: y = array2[secret*4096]

Software Fix for Spectre v2

Spectre V2 Vulnerability (Branch Target Injection) Software fix: retpoline

Predicted Target Address Address to Ifence/pause loop
inserted in RSB by compiler

Speculative Path Discard \
i Speculative Path Discard
B Actual Address Indirect Call
Execution Path eaanl - Actual Add
S Ex ecution Path / . s - ctua ress

TIME predicted Target Address # Actual Address TIME ~ Compiler Inserted Address # Actual Address
Indirect Branch Predictor RSB
Indirect Branch Predictor is RSB can be controlled
invisible to software by software

Predicted Target Address |«—— Poisoned by Attacker ADDR Ifence/pause |« Inserted by Compiler

http://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-

Address to Ifence/pause loop
inserted in RSB by compiler

\ Speculative Path

Discard
Indirect Call
Execution Path

Actual Address
\ ------------------- /

—_—
TIME Compiler Inserted Address # Actual Address

RSB

RSB can be controlled
by software

ADDR Ifence/pause «— Inserted by Compiler

Before jmp *%rax

retpolin
e
1. call load label
2.capture_ret_spec:
3. pause ; LFENCE
After 4. jmp capture_ret_spec
retpoline
5.load label:
6. mov %rax, (%rsp)
7. RET

Adopted in Linux

Intel eIBRS

Listing 3 Linux implementation for the Spectre v2 mitigation
before version 5.14 on Intel processors depending on eIBRS
hardware support. The shown example is taken from the
indirect jump in charge to execute the correct syscall handler

stored in the sys_call_table.

elBRS: Enhanced Indirect Branch Restricted Speculation
1 do_syscall 64:

Isolate BTB entries across privilege levels.
Advertised as a mitigation against Spectre v2.

2 -
3 mov rax, [sys_call_table + rax*8]
4 call __x86_indirect_thunk_rax

1 ;with eIBRS support
BTB > __x86_indirect_thunk_rax:
tag target 3 jmp rax

1 ;without eIBRS support (retpoline)
2 __ x86_indirect_thunk_rax:
3 call B
4 A: pause
5 lfence
6 jmp A

branch v v 7 B: mov [rsp], rax

Source . _o |, Predicted : meh

target
address

Barberis et al. Branch History Injection: On the Effectiveness of Hardware Mitigations Against
Cross-Privilege Spectre-v2 Attacks. USENIX’22 https://www.vusec.net/projects/bhi-spectre-bhb/ 34

http://www.vusec.net/projects/bhi-spectre-bhb/

Vulnerabilities of Intel eIBRS

Branch source

address - What security property does elBRS
L ey | [[tag | target provide exactly? What does the so-called
[“isolation” mean? Non-interference?
-« BHB j C

Lesson: should not base

il

x v v communication security properties
Predicted
Branch =2 1 tazget based on gadget patterns. Instead,
src || dst want clearly defined contracts

	Comp 790-184:�Hardware Security and Side-Channels��
	Outline
	Attack Examples
	Who to blame? Who should fix the problem?
	Software Developer's Problem
	Hardware Designer’s Problem
	Example: Termination Time Vulnerability
	Non-Interference Example
	Non-Interference: A Formal Definition
	Non-Interference for Side Channels
	Understand the Property
	Constant-Time Programming
	Data-oblivious/Constant-time programming
	Slide Number 17
	Slide Number 18
	Real-world Crypto Code
	Eliminate Secret-dependent Branches
	More Conditional Branches
	Memory Accesses
	An Optimization
	OpenSSL Patches Against Timing Channel
	Arithmetic Operations
	The Problem and A Solution
	Constant-time ISA
	Constant-time under Speculation
	The Usage of Fences
	Software Fix for Spectre v2
	Slide Number 36
	Intel eIBRS
	Vulnerabilities of Intel eIBRS
	End slide

