
Comp 790-184:
Hardware Security and Side-Channels

Lecture 4: Side-Channel Defenses
February 20, 2024
Andrew Kwong



Outline

• How to mitigate side-channel attacks

•Non-interference property

•Constant-time programming

•Constant-time under speculation



Attack Examples

def check_password(input):

size = len(password); 

for i in range(0,size):
if (input [i] == password[i]): 
return ("error");

return (“success”);

Example #1: termination time vulnerability for i = n-1 to 0 do
r = sqr(r)
r = r mod n

r = mul(r, b) 
r = r mod n

end 
end

Example #2: RSA cache vulnerability

……
Ld1: uint8_t secret = *kernel_address;
Ld2: unit8_t dummy = probe_array[secret*64];

Example #3: Meltdown

if ei == 1 then



Who to blame? Who should fix the
problem?

4



Software Developer's Problem

Software developers:
• Need to write software for devices with 

unknown design details.
• How can I know whether the program is 

secure running on different devices?



Hardware Designer’s Problem

Hardware designer:
• Need to design processors for arbitrary 

programs.
• How to describe what kind of programs can 

run securely on my device?



Example: Termination Time Vulnerability

• How to fix it?

Make the computation time independent
from the secret (password)

def check_password(input):

size = len(password); 

for i in range(0,size):
if (input [i] != password[i]): 
return ("error");

return (“success”);



Non-Interference Example

High: root password, etc.

Low: public data base, 
website content

• Intuitively: not affecting
• Any sequence of low inputs will produce the same low outputs, 

regardless of what the high level inputs are.



⟹ M1L' = M2L′

Non-Interference: A Formal Definition

• The definition of noninterference for a deterministic program P

∀ M1, M2, P

M1L = M2L ∧ (M1, P ) →∗ M1′ ∧ (M2, P ) →∗ M2′



Non-Interference for Side Channels

• The definition of noninterference for a deterministic program P

What should be included in the observation trace?

⟹

M1L = M2L ∧ (M1, P ) →∗ M1′ ∧ (M2, P ) →∗ M2′

∀ M1, M2, P
O1 O2

O1=O2



Understand the Property

Consider input as part of M
• What is ML ?
• What is MH ?
• What is O ?

def check_password(input):

size = len(password); 

for i in range(0,size):
if (input [i] == password[i]): 
return ("error");

return (“success”);

∀ M1, M2, P

M1L = M2L ∧ (M1, P ) →∗ M1′ ∧ (M2, P ) →∗ M2′

⟹ O1=O2

O1 O2



Constant-Time Programming

• For any secret values, a program always takes the same 
amount of time for the same input when executing on 
the same machine, and this holds for arbitrary inputs.



Data-oblivious/Constant-time programming

• How do we deal with conditional branches/jumps?

• How do we deal with memory accesses?

• How do we deal with arithmetic operations: division,
shift/rotation, multiplication?

For details on real-world constant-time crypto, check this out: 
https://www.bearssl.org/constanttime.html

Your Code

Compiler

Hardware

http://www.bearssl.org/constanttime.html


def check_password(input):

size = len(password); 

for i in range(0,size):
if (input [i] != password[i]): 
return ("error");

return (“success”);

dontmatch = false;

dontmatch = true;

def check_password(input):

size = len(password);

for i in range(0,size):

if (input [i] != password[i]):

return dontmatch;

17



dontmatch |= (input [i] != password[i])

def check_password(input):

size = len(password); 

dontmatch = false;

for i in range(0,size):

return dontmatch;

dontmatch = false;

dontmatch = true;

def check_password(input):

size = len(password);

for i in range(0,size):
if (input [i] != password[i]):

return dontmatch;



Real-world Crypto Code

from libsodium cryptographic library:

for (i = 0; i < n; i++) 
d |= x[i] ^ y[i];

return (1 & ((d - 1) >> 8)) - 1;

Compare two buffers x and y, if match, return 0, otherwise, return -1.

Examples from Cauligi et al. FaCT: A DSL for Timing-Sensitive Computation. PLDI’19



Eliminate Secret-dependent Branches

• An instruction: cmov_
• Check the state of one or more of the status flags in the EFLAGS 

register (cmovz: moves when ZF=1)
• Perform a move operation if the flags are in a specified state
• Otherwise, a move is not performed and execution continues with 

the instruction following the cmov instruction



More Conditional Branches

if (secret) 
res = f1();

else
res = f2();

r1 ← f1();
r2 ← f2(); 
mov r3, r1
test secret, secret
cmovz r3, r2
// res in r3

Potential problems:
• What if we have nested branches?
• What if when secret==0, f1 is not executable, e.g., 

causing page fault or divide by zero?
• What if f1 or f2 needs to write to memory, perform IO, 

make system calls?
• Hardware assumption: what if cmovz will be executed

as soon as the flag is known (e.g., speculative 
execution)?



Memory Accesses

• Performance overhead.
• Techniques such as ORAM can reduce 

the overhead when the buffer is large

a = buffer[secret]

for (i=0; i<size; i++)
{

tmp = buffer[i]; 
xor secret, i 
cmovz a, tmp

}

23



An Optimization

• We can reduce the redundant accesses by only accessing one byte in 
each cache line.

offset = secret % 64;
for (i=0; i<size; i+=64)
{

index = i+offset;
tmp = buffer[index]; 
xor secret, index 
cmovz a, tmp

}

for (i=0; i<size; i++)
{

tmp = buffer[i]; 
xor secret, i 
cmovz a, tmp

}



OpenSSL Patches Against Timing Channel

Yarom et al. CacheBleed: A Timing Attack on OpenSSL Constant Time RSA. 
https://faculty.cc.gatech.edu/~genkin/cachebleed/index.html

25

CacheBleed, an attack leaks SSL 
keys via L1 cache bank conflict.



Arithmetic Operations

Subnormal floating point numbers

26



The Problem and A Solution

Rane et al. Secure, Precise, and Fast Floating-Point Operations on x86 Processors. USENIX’16



Constant-time ISA

• Some efforts:
• ARM Data Independent Timing (DIT)
• Intel Data Operand Independent Timing (DOIT)

ARM DIT: https://developer.arm.com/documentation/ddi0601/2020-12/AArch64-Registers/DIT--Data-Independent-Timing
Intel DOIT: https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-
operand-independent-timing-isa-guidance.html

http://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-


Constant-time under Speculation

• What problems arise?



The Usage of Fences

Ld1: uint8_t secret = *kernel_address;

Ld2: unit8_t dummy = probe_array[secret*64];

Br: if (x < size_array1) { 

Ld1: secret = array1[x] 

Ld2: y = array2[secret*64]

}

Br: jmp target // indirect jump

// target = Ld1

…

Ld1: secret = array1[x]

Ld2: y = array2[secret*4096]

Meltdown

Spectre v1 Spectre v2



Software Fix for Spectre v2

Spectre V2 Vulnerability (Branch Target Injection)

32

Software fix: retpoline

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-
documentation/retpoline-branch-target-injection-mitigation.html

http://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-


Before 
retpolin
e

jmp *%rax

1. call load_label

2.capture_ret_spec:
3. pause ; LFENCE

After 4. jmp capture_ret_spec
retpoline

5.load_label:
6. mov %rax, (%rsp)
7. RET

33

Adopted in Linux



Intel eIBRS

34
Barberis et al. Branch History Injection: On the Effectiveness of Hardware Mitigations Against 
Cross-Privilege Spectre-v2 Attacks. USENIX’22 https://www.vusec.net/projects/bhi-spectre-bhb/

eIBRS: Enhanced Indirect Branch Restricted Speculation
Isolate BTB entries across privilege levels. 
Advertised as a mitigation against Spectre v2.

branch
Source
address

http://www.vusec.net/projects/bhi-spectre-bhb/


Vulnerabilities of Intel eIBRS

What security property does eIBRS 
provide exactly? What does the so-called 
“isolation” mean? Non-interference?

Lesson: should not base
communication security properties
based on gadget patterns. Instead, 
want clearly defined contracts




	Comp 790-184:�Hardware Security and Side-Channels��
	Outline
	Attack Examples
	Who to blame? Who should fix the problem?
	Software Developer's Problem
	Hardware Designer’s Problem
	Example: Termination Time Vulnerability
	Non-Interference Example
	Non-Interference: A Formal Definition
	Non-Interference for Side Channels
	Understand the Property
	Constant-Time Programming
	Data-oblivious/Constant-time programming
	Slide Number 17
	Slide Number 18
	Real-world Crypto Code
	Eliminate Secret-dependent Branches
	More Conditional Branches
	Memory Accesses
	An Optimization
	OpenSSL Patches Against Timing Channel
	Arithmetic Operations
	The Problem and A Solution
	Constant-time ISA
	Constant-time under Speculation
	The Usage of Fences
	Software Fix for Spectre v2
	Slide Number 36
	Intel eIBRS
	Vulnerabilities of Intel eIBRS
	End slide

