
Pseudorandom Black Swans:
Cache Attacks on CTR_DRBG

Shaanan Cohney1, Andrew Kwong2, Shahar Paz3, Daniel Genkin2, Nadia Heninger4, Eyal Ronen5, Yuval Yarom6

1University of Pennsylvania, 2University of Michigan, 3Tel Aviv University, 4University of California, San Diego,
5Tel Aviv University and COSIC (KU Leuven), 6University of Adelaide and Data61

Abstract—Modern cryptography requires the ability to se-
curely generate pseudorandom numbers. However, despite
decades of work on side-channel attacks, there is little discussion
of their application to pseudorandom number generators (PRGs).
In this work we set out to address this gap, empirically evaluating
the side-channel resistance of common PRG implementations.

We find that hard-learned lessons about side-channel leakage
from encryption primitives have not been applied to PRGs, at
all abstraction levels. At the design level, the NIST-recommended
CTR_DRBG does not have forward security if an attacker is
able to compromise the state (e.g., via a side-channel). At the
primitive level, popular implementations of CTR_DRBG such
as OpenSSL’s FIPS module and NetBSD’s kernel use leaky
T-table AES as their underlying cipher, enabling cache side-
channel attacks. Finally, we find that many implementations
make parameter choices that enable an attacker to fully exploit
side-channels and recover secret keys from TLS connections.

We empirically demonstrate our attack in two scenarios.
First, we carry out a cache attack that recovers the private
state from vulnerable CTR_DRBG implementations when the
TLS client connects to an attacker-controlled server. We then
subsequently use the recovered state to compute the client’s
long-term authentication keys, thereby allowing the attacker to
impersonate the client. In the second scenario, we show that an
attacker can exploit the high temporal resolution provided by
Intel SGX to carry out a blind attack to recover CTR_DRBG’s
state within three AES encryptions, without viewing output, and
thus decrypt passively collected TLS connections from the victim.

I . I N T R O D U C T I O N

It is a truth universally acknowledged, that a securely
implemented cryptographic primitive must be in want of a
cryptographically secure pseudorandom number generator [3].

Modern cryptography relies on randomness to prevent an

attacker from predicting secret values generated by parties in a

cryptographic protocol. Indeed, random values are universally

used to ensure security properties for nearly all cryptographic

data, including secret keys for confidentiality or integrity, secret

keys for public-key encryption, key exchange, signatures, as

well as for protocol nonces to prevent replay attacks. Thus,

a cryptographically secure Pseudorandom Generator (PRG) is

one of the fundamental primitives of modern cryptography.

The simplest theoretical PRG construction is an algorithm

that expands a smaller seed into a longer output sequence

that is computationally indistinguishable from a true sequence

of random bits. However, the practical security demands for

random number generation are somewhat more complex; in

real systems, these pseudorandom number generator construc-

tions are often multi-stage algorithms that collect inputs from

environmental entropy sources or hardware into an “entropy

pool”. The pool is then used to seed a PRG that generates

cryptographically secure output. Real world PRGs must also

meet additional security guarantees, including recovery from

state compromise. A number of academic works and practical

security failures have illustrated the disastrous effects on real-

world cryptography from flawed random number generation

implementations or designs. These have ranged from uninten-

tional flaws such as failure to properly seed PRGs [35, 46, 53,

95], to designs prone to implementation mistakes [20], to a

suspected intentional back door in the now “deprecated and

disgraced” [62] Dual EC DRBG design, which appears to have

been repurposed and exploited in the wild [18, 19].
Since their introduction in the seminal works of [5, 64, 65],

microarchitectural attacks that exploit contention on internal

components to leak information have been used to violate

nearly every security guarantee offered by computer systems.

Indeed, in recent years there have numerous examples of

side-channel attacks with diverse targets and vectors. These

range from attacks that extract cryptographic keys from

keystroke timing via CPU caches [28, 93], attacks that exploit

transient execution for breaking fundamental OS isolation

guarantees [16, 17, 47, 52, 82, 86], and even attacks that exploit

limitations in memory hardware to change or read the contents

of data [14, 43, 45, 48, 49]. Side-channel resistance is among

the key security properties demanded of implementations.
Much less is known, however, about the security of PRGs

in the presence of side-channel leakage. While backtracking

resistance and prediction resistance are stated to be among the

main security goals of the designs in NIST’s PRG recommen-

dations (NIST SP 800-90A), the standard does not consider

the impact of side-channel attacks on these goals. Although

some preliminary evidence [98] indicates the possibility of

exploiting side-channel vulnerabilities in PRG seeding, there

has been no systematic exploration of side-channel leakage

from PRG implementations. Thus, we explore these questions:

Are common PRG designs susceptible to microarchitectural
side-channel attacks? What are the security implications of

such leakage? Can an attacker exploit them, and if so, how?

A. Our Contribution
Unfortunately, in this paper we give a positive answer to

the above questions. Specifically, we focus on CTR_DRBG,

which is the most popular PRG design out of those rec-

ommended in NIST SP 800-90A, and is supported by 68%

1241

2020 IEEE Symposium on Security and Privacy

© 2020, Andrew Kwong. Under license to IEEE.
DOI 10.1109/SP40000.2020.00046

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 12,2022 at 02:23:34 UTC from IEEE Xplore. Restrictions apply.

of validated implementations in NIST’s Cryptographic Mod-

ule Validation Program (CMVP). On the first question, we

show that CTR_DRBG is vulnerable to state compromise

attacks because some popular implementations still use a

non-side-channel-resistant implementation of the underlying

block cipher. On the second question, we show that several

popular CTR_DRBG implementations fail to properly reseed

the PRG in many situations, enabling feasible attacks against

prediction resistance. Furthermore, we demonstrate that using

the PRG within Intel SGX permits a very strong blind state

recovery attack in as few as three encryptions, without the

attacker having access to PRG output. We demonstrate end-

to-end attacks on the CTR_DRBG implementations used by

OpenSSL’s FIPS module, NetBSD, and FortiOS, allowing an

attacker targeting TLS connections to recover session secrets

and long-term ECDSA keys used for client authentication. For

SGX enclaves, we go a step further, showing an attacker that

is capable of passively decrypting TLS connections.

The Use of T-Table AES. T-table AES is a performance-

oriented AES implementation that uses table lookups to com-

pute the state transitions between individual encryption rounds.

Unfortunately, because these lookups are key-dependent, T-

table AES has become the canonical example of cache side-

channel leakage [10, 58, 64].

While the threat of side channels and the availability of

AES-NI hardware have resulted in declining usage of T-table

AES for encryption and decryption operations, similar lessons

do not seem to have been learned for the case of random

number generation. Remarkably, even after more than a decade

of attacks, [5, 13, 32, 57, 64] we show that unprotected and

leaky T-tables are still used for encrypting the counter inside

CTR_DRBG by the following popular implementations:

• The OpenSSL 1.0.2 FIPS Module. Using this library is

one of a small number of ways to obtain U.S. government

certification for a cryptographic module without submitting

to the expensive and time-consuming validation process.

• The NetBSD kernel, which uses CTR_DRBG with T-Table

AES as the system-wide random number generator.

• The FortiOSv5 network device operating system uses the

same vulnerable CTR_DRBG implementation as NetBSD.

• The mbedTLS-SGX port [96] of the popular mbedTLS

cryptography library to SGX.

• The nist_rng library [40], which is a library for random

number generation used by open source projects such as

libuntu (a C implementation of NTRUEncrypt), the XMHF

hypervisor, and others.

CTR_DRBG State Recovery. We adapt previous work

[58] on side-channel attacks on AES encryption to the PRG

setting, and extend the work of Woodage and Shumow [87]

to show how an attacker who observes CTR_DRBG’s cache

access patterns can recover the PRG state using about 2000

bytes of output. We then empirically demonstrate how a client

connecting to a malicious TLS sever can be coerced to provide

enough PRG output that an attacker who concurrently observes

the PRG’s cache access patterns is capable of recovering the

PRG state used during the TLS handshake. We show that

NetBSD’s kernel, OpenSSL’s FIPS module, and FortiOS fail

to reseed the PRG with enough entropy. Thus, by using a

moderate amount of brute forcing for the client entropy, the

attacker can wind forward the client’s PRG and recover the

ECDSA nonce used by the client to authenticate herself to

the malicious TLS server. Finally, using the recovered ECDSA

nonce and the signature produced by the client during the

TLS handshake, the attacker can recover the client’s long

term authentication keys, which would allow the attacker to

impersonate the client in future TLS connections.
State Recovery Without a Malicious TLS Server. The above

attack on TLS requires the victim client to connect to a mali-

cious TLS server. The the attacker then obtains the output from

the client’s CTR_DRBG implementation while simultaneously

observing the client’s cache access patterns across many AES

encryption operations. Tackling this limitation, we perform

a novel “blind” differential cryptanalysis attack exploiting

side-channel leakage from T-table based CTR_DRBG running

inside an SGX enclave. This attack leverages the fact that

CTR_DRBG encrypts an incrementing counter, and is capable

of extracting the PRG’s state from only three AES encryption

operations, without requiring the attacker to observe the PRG’s

output. Thus, we eliminate the need for the TLS client to

connect to an attacker-controlled server. We also note that this

type of attack may be applicable to other settings with similar

constraints, such as GCM-SIV [31].
TLS Decryption with High-Entropy PRG Reseeding. Fi-

nally, we note that any call to CTR_DRBG for random byte

generation must use at least three AES encryption operations,

producing the cache access information required by our dif-

ferential cryptanalysis state-recovery technique. As this vector

does not require the TLS client to connect to an attacker-

controlled server, the attacker can recover the PRG state on any
request for random bytes, regardless of how the implementation

reseeds the PRG. We demonstrate recovery of the premaster

secret, master secret, and symmetric encryption keys for any

TLS connection made by mbedTLS-SGX (a port of mbedTLS

to SGX [96]) to any TLS server. In particular, we are able

to passively decrypt the session by observing cache access

patterns made by mbedTLS-SGX.
Summary of Contributions. In this work we study

the implications of side-channel analysis on random number

generation. Our contributions can be summarized as follows:

• We present the first security analysis of CTR_DRBG in

the presence of side-channel leakage, demonstrating a cache

attack that achieves PRG state recovery against many popular

implementations (Section V).

• We show that PRG reseeding algorithms in popular im-

plementations are sometimes insecure. By combining these

flaws with the above state recovery attack, we empirically

demonstrate an end-to-end attack on TLS that recovers long-

term client authentication keys if the TLS client connects to

an attacker-controlled TLS server (Section VI).

• We present a novel differential cryptanalysis technique that

exploits side-channel leakage from CTR_DRBG running

1242

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 12,2022 at 02:23:34 UTC from IEEE Xplore. Restrictions apply.

inside an SGX enclave to recover the PRG state within three

AES encryption operations (Section VII-B).

• We demonstrate an end-to-end attack on an enclaved TLS

client that is capable of passively decrypting the TLS

connections regardless of PRG reseeding (Section VII-C).

• Finally, we evaluate CTR_DRBG’s popularity by scraping

NIST’s Cryptographic Module Validation Program database.

We show that CTR_DRBG was the most popular design,

supported by 68% of implementations (Section VIII).

B. Coordinated Disclosure

We disclosed the vulnerabilities we discovered to the security

teams of OpenSSL, Fortinet, and NetBSD in May 2019.

OpenSSL responded that these attacks are outside their threat

model. NetBSD has since replaced the PRG with Hash_DRBG.

FortiOS assigned the flaw CVE-2019-15703, and has plans to

remediate the problem.

I I . B A C K G R O U N D

A. Pseudorandom Generators

The term “DRBG” does not seem to be widely used outside

of the government context, so for the purposes of this paper,

we will use the term pseudorandom generator (PRG). We

begin by providing basic background regarding pseudorandom

generators and their security properties. Informally, a PRG is

an algorithm that, given an initial seed, produces a stream

of random bits such that an attacker cannot distinguish the

produced stream from a truly uniform random bit stream with

probability better than some negligible bound.

PRG Definition. Following [22, 87], a PRG with in-
put is a triplet of polynomial time deterministic algorithms

{instantiate, generate, reseed}. The PRG is instantiated by call-

ing instantiate on an entropy sample I and a nonce N , and

outputs initial state S0. Next, generate gets as input a state S, a

number of bits to output nbits, and additional input addin, and

outputs new state S′ and bits R ∈ {0, 1}nbits. Finally, reseed
gets as input a state S, an entropy sample I, an additional input

addin, and outputs a new state S′.
Random Number Generation. The PRG is instantiated by

a single call to instantiate. A user can then repeatedly request

up to r random bits through a call to generate, which also

outputs a new state for the PRG. Finally, both the user and

the generate function can also call update, which updates the

state of the PRG to a new state.

PRG Security. Woodage and Shumow [87] define three

security properties for a PRG: robustness, backtracking resis-

tance, and prediction resistance. Backtracking resistance is the

property that if the generator is compromised at time t1, an

adversary remains unable to distinguish outputs generated prior

to t1 from random. Similarly, prediction resistance ensures that

there is some time t2 after t1 when no further outputs can be

distinguished from random. Robustness incorporates both of

these guarantees into a single property. Next, while the models

of [22, 87] include an attacker that is able to compromise the

entropy distribution used for sampling entropy to the PRG, we

consider a weaker attacker who is unable to do so. We therefore

obtain a stronger result as our weaker attacker is able break

the PRG despite her inability to corrupt the entropy source.

Instead we assume that the PRG receives entropy samples

drawn uniformly at random from the entropy space, better

matching our real-world scenario. As our attack targets the

prediction resistance guarantee of CTR_DRBG, we provide a

more formal definition for prediction resistance, from [22].

Prediction Resistance. As mentioned above, prediction

resistance models a PRG’s ability to recover from state

compromise. We begin by modeling an adversary capable of

compromising the PRG state by allowing the adversary to

execute the following procedures on the PRG.

• get-output. Models an attacker’s ability to query the PRG

for output. Calls generate(S, nbits, addin) where S is the

current state, nbits is the number of bits to output, addin is

known to the attacker, and generate returns the output R.

• set-state. Models an attacker who compromises the state

of the PRG. Gets as input an attacker-chosen value S∗ and

sets the PRG state S ← S∗.
• get-state. Models an attacker who compromises the state

of the PRG. Returns the PRG state S.

• next-ror. Tests an attacker’s ability to distinguish output

from the PRG from uniformly random output. Sets R0 ←
generate(S, nbits, addin) with S as the PRG state, nbits the

number of bits in R0, and addin known by the attacker. It

then sets R1 to a value drawn uniformly at random from the

same domain as R0 and picks a uniform choice bit b ←$

{0, 1}. The procedure returns Rb to the adversary which

outputs a bit b′.
An adversary’s advantage, and therefore the security strength of

the PRG, is parameterized by the number of calls an adversary

makes to the above procedures along with the adversary’s

probability of guessing the correct challenge bit in the next-
ror game. We use the following security definition for a PRG:

Definition 1 (PRG with Input Security). A PRG with input
G is called a (t, qD, qR, δ)−prediction-resistant PRG if for any
adversary A running in time at most t, making at most qD
calls to update with qR calls to next-ror/get-output, and one
call to get-state, which is the last call A is allowed to make
prior to calling next-ror, it holds that���Pr

[
b = b′ | b′ ← AOP

G (qD, qR)
]
− 1/2

��� ≤ δ
where OP = {next-ror, set-state, get-state, get-output}.

B. NIST SP 800-90 and Related Standards

NIST Special Publication (SP) 800-90 is entitled “Recom-

mendation for Random Number Generation Using Determin-

istic Random Bit Generators” and is the de facto standard

for algorithms for generating random numbers. The document

was first published in 2006 and has undergone three revisions:

“800-90 Revised”, published in 2007, “800-90 A”, published in

2012, and “800-90A Rev. 1”, published in 2015. The first three

publications contained four pseudorandom number generator

designs, while the last publication contained only three. The

missing design was the infamous DualEC DRBG, which was

1243

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 12,2022 at 02:23:34 UTC from IEEE Xplore. Restrictions apply.

removed from the publication after Shumow and Ferguson dis-

covered a design flaw that enabled a backdoor [77] which was

later confirmed by Snowden [67]. The three remaining designs

in NIST 800-90A Rev. 1 are HMAC_DRBG, HASH_DRBG

and CTR_DRBG, which are based on HMAC, hash, and block

cipher primitives respectively. For the remainder of this paper,

we will refer to the 2015 publication as SP 800-90A.

C. AES

AES encryptions and decryptions can be decomposed into

rounds, which use round keys derived from the secret key.

Each round, in turn, can be further decomposed into four oper-

ations: AddRoundKey, SubBytes, ShiftRows, and MixColumns.

Performance-optimized software implementations usually use

a series of lookup tables known as “T-tables” to combine the

latter three operations into a single table lookup. The state at

each round is used to index into the T-tables, and the results

are XORed with the round key to produce the state for the

next round. The final round of AES uses a different T-table

from earlier rounds as there is no final mixing operation in that

round. Unfortunately, by observing the memory access patterns

to these tables, an attacker can recover the cipher’s secret key

within only a few encryptions. Indeed, there is a large body

of work on attacking table-based AES implementations [28,

32, 38, 64, 78, 97]. Finally, most modern processors include

CPU instructions that execute AES operations in hardware

(e.g., AES-NI). In addition to improving performance, these

instructions do not rely on table lookups from system memory,

thereby mitigating side-channel risks.

D. Cache Attacks

Our work contributes to a long line of cache-based side-

channel attacks. These attacks have yielded varied and robust

mechanisms [21, 29, 80] for breaking cryptographic schemes

using information leakage from cache timings. Popular targets

have included digital signature schemes [4, 27] and symmetric

ciphers [64, 69, 93], despite the inclusion of countermeasures

in popular cryptographic implementation libraries [23, 79].

Recent literature has also begun to examine side-channel

vulnerabilities in environments provided by trusted processor

enclaves, particularly Intel SGX [11, 50, 55, 82, 89, 90], which

are designed to be more secure against even local attackers

who are able to run unprivileged code.

Flush+Reload. Flush+Reload is a side-channel attack

technique that consists of three steps. In the first step, the

attacker flushes or evicts a memory location from the cache.

The attacker then waits a while, allowing the victim to execute.

Finally, in the third step, the attacker reloads the monitored

memory location and measures the reload time. If the victim

has accessed the memory location between the flush and the

reload steps, the location will be cached, and the reload will

be fast. Otherwise, the memory will not be cached and the

reload will be slow. Flush+Reload has been used to attack

symmetric [38] and public key [4, 27, 66, 68, 93] cryptography,

as well as for non-cryptographic and speculative execution

attacks [17, 28, 47, 52, 82, 83, 86, 91].

Prime+Probe. While powerful, Flush+Reload relies on the

victim and the attacker accessing the same memory location

and is thus typically applied to OS-deduplicated pages in

binaries and shared libraries. When shared memory is not

available (e.g., for SGX), we use a different cache attack

technique called Prime+Probe [64, 80].

A Prime+Probe attack consists of three steps. In the first, the

attacker primes the monitored cache lines by making enough

memory accesses so that each way (group of cache lines

fetched together) of the targeted cache sets is occupied by

the attacker’s memory value. In the second step, the attacker

yields control to the victim process. In the final step, the

attacker probes those same cache lines by reading from the

corresponding memory locations and measuring their access

times. If the victim accessed memory that mapped to the same

cache lines, then the attacker will measure larger latencies for

probes corresponding to those evicted cache lines.

I I I . C T R _ D R B G

CTR_DRBG is a PRG design described in NIST SP 800-

90A. It uses the encryption of an incrementing counter under

a block cipher to generate outputs. The block cipher may be

either 3DES with a 64-bit key or AES with a key of length

128, 192, or 256 bits. The design mixes in additional data

at various stages. A derivation function (commonly the same

block cipher under a different key) can optionally be used to

extract entropy from the additional data. The implementations

we examined all used a derivation function.

Private State and Length Parameters. The private state S

of the PRG is composed of the following:

• A key K ∈ {0, 1}keylen, with bit length keylen matching

that of the underlying cipher.

• A counter V ∈ {0, 1}≤blocklen that is incremented after each

call to the block cipher, where blocklen is the output length

of the underlying block cipher.

• A reseed counter c that indicates when a reseed is required.

The PRG’s nonce space N is {0, 1}seedlen and the entropy

space is {0, 1}seedlen where seedlen = keylen + blocklen.

PRG Instantiation. CTR_DRBG’s instantiate function takes

as input an entropy sample I and an arbitrary nonce N
chosen by the implementation, of equal length. It computes

a temporary value t as the output for the derivation function

applied to I and N . It then calls a subroutine update, outlined

in Algorithm 1, with inputs K = V = 0 and t as the additional

input. The initial state S0 = (K,V, c) consists of the outputs

(K,V) from update, and reseed counter c = 1.

State Update. Each of CTR_DRBG’s functions call a

subroutine update, outlined in Algorithm 1, that updates the

internal state. The routine’s input is a key K , counter V , and

additional data addin. In Lines 4–6 the function increments

the counter V and appends the encryption of V under key K
to a buffer temp. This process is repeated until temp contains

seedlen bytes. The resulting buffer is then XORed with addin
(Line 7). Finally, in Lines 8–9 the function outputs the new key

K ′ as the leftmost keylen bits of the buffer, and new counter

1244

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 12,2022 at 02:23:34 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Update. The update routine is called by the

other routines and passes the current state (and potentially

additional input) into the underlying block cipher. It outputs

new state S = (K,V) composed of key K and counter V .

1: function U P D AT E(K,V, addin)

2: temp← null
3: while len(temp) < seedlen do
4: V ← (V + 1) mod 2blocklen
5: output_block ← encrypt(K,V)
6: temp← temp‖output_block
7: temp← temp ⊕ addin
8: K ′ ← leftmost(temp, keylen)
9: V ′ ← rightmost(temp, blocklen)

10: return K ′,V ′

V = V +1

Vi−1

Encrypt

KiVi

len(temp) <
nbits

buffer

update

KiVi addin

Ki+1Vi+1

Yes

No

E(K,V)

Fig. 1: The central loop of the generate function increments
the counter V , encrypts V under K , and adds the output to
a buffer temp, repeating until nbits have been generated.
The function then updates the key and state before
returning the contents of the buffer.

value V ′ as the rightmost blocklen bits of the buffer, where

blocklen is the block length of the cipher.
Generating a Random Stream. A user generates output

from the PRG by calling the generate function outlined in

Algorithm 2. It takes as input the state S, the number of bits

requested nbits, and a string addin. generate outputs a string

of random bits of length nbits as well as an updated state

S′. According to SP 800-90A, the addin parameter “may be a

means of providing more entropy for the DRBG internal state”.

This additional input is allowed to be public or private and

may contain secrets if private. The specification notes that “if

the additional input is kept secret and has sufficient entropy,

the input can provide more assurance when recovering from

the compromise of the entropy input, the seed or one or more

DRBG internal states”. However, the specification does not

include requirements for either secrecy or entropy for addin.
The generate function first checks if a reseed is needed, and

if so, throws an error (Lines 3–4). While the inclusion of an

error message does not strictly adhere to our PRG definition,

following Woodage and Shumow [87] we assume inputs are

valid and omit consideration of errors from our analysis. If the

call included additional data addin, this data is first whitened

by running it through the derivation function, and then it is

used to update K and V through a call to update (Lines 5–

7). Otherwise, addin is set to a string of zeros (Line 9). On

each iteration of the loop on Lines 11–14, the counter V is

incremented. V is then encrypted under K and the result is

appended to the output buffer. This process is repeated until

enough output has been collected. On Line 16 the function

Algorithm 2 Generate. The generate function begins by

throwing an error if the reseed counter exceeds the limit, and

otherwise updates the state with the optional additional input,

produces output by encrypting V under K , then increments

V . The encryption and increment steps are repeated until the

specified length of output has been produced. The state is then

updated again, and the reseed counter is incremented.

1: function G E N E R AT E(S, nbits, addin)

2: parse (K,V, c) from S
3: if c > reseed_interval then
4: return reseed_required
5: if addin � Null then
6: addin← df(addin)
7: (K,V) ← update(K,V, addin)
8: else
9: addin← 0seedlen

10: temp← Null
11: while len(temp) < nbits do
12: V ← (V + 1) mod 2blocklen
13: output_block ← encrypt(K,V)
14: temp← temp‖output_block
15: out ← leftmost(temp, nbits)
16: (K ′,V ′) ← update(K,V, addin)
17: c′ ← c + 1
18: return S = (K ′,V ′, c′), out

calls update with addin to update K and V again before the

reseed counter c is incremented (Line 17). The function returns

the new key, state, reseed counter, and output.

If the attacker compromises the key K and counter V
between Lines 11–14 and is able to guess addin, she can

predict the new key K ′ and counter V ′. She can then predict

future PRG outputs as well as future values of K and V . Note

that the same symmetric key is used to generate all of the

requested output, and the key is only changed at Line 16 after

all blocks have been generated. This observation is a crucial

element of our attack, since a long output buffer gives the

attacker many opportunities to extract K via a side-channel.

Indeed, SP 800-90A specifies that at most 65KB can be

requested from the generator in a single call before a key

change. This is presumably intended to limit a single state’s

exposure to an attacker. However, our work demonstrates that

state recovery attacks within this limit are still viable.

Reseeding. The reseed function is intended to ensure that high

quality entropy is mixed into the state as required. The reseed

function takes as input additional input addin, an entropy

sample I, and a state S that consists of the key K , counter

V , and reseed counter c. It calls the update subroutine on a

derivation function taken over I and addin, which updates K
and V . Finally, it resets the reseed counter c to 1 and returns

the new key, counter, and reseed counter.

I V. C RY P TA N A LY S I S O F C T R _ D R B G

Security Proofs. Woodage and Shumow [87] note that past

analyses of the security claims in SP 800-90A [15, 36, 42,

1245

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 12,2022 at 02:23:34 UTC from IEEE Xplore. Restrictions apply.

75, 76, 94] were limited by simplifying assumptions, believed

necessary to accommodate nonstandard design elements. Their

analysis evaluated the standard’s claims that the designs in

the standard are both “backtracking resistant” and “prediction

resistant”. They provide robustness proofs that include back-

tracking and prediction resistance for both the HMAC and hash

constructions, but were unable to do so for CTR_DRBG and

instead identified an attack compromising prediction resistance.

Attacking CTR_DRBG. Bernstein [6] notes that to obtain

prediction resistance after every random bit, the generate
process must be called with only a single bit, incurring massive

performance costs. Furthermore, SP 800-90A notes that “For

large generate requests, CTR_DRBG produces outputs at the

same speed as the underlying block cipher algorithm encrypts

data”. Woodage and Shumow [87] use this observation to pro-

pose an attack scenario where large amounts of CTR_DRBG

output is buffered, setting the stage for a side-channel attack

on the block cipher key. They give the following procedure

for recovering output at t + 1 from output rt and key Kt that

was compromised at time t:
1) Counter Recovery From Output. Attacker computes the

state prior to the last update as V ′t = decrypt(Kt, rt)
2) Generating St+1. The attacker winds the generator forward

by computing Kt+1,Vt+1 = update(Kt,V ′t , addint)
3) Generating PRG Output rt+1. This state is now used to

compute rt+1 = generate(Kt+1,Vt+1, addint+1)

Overall Attack Complexity. Assuming that the attacker has

access to Kt , the complexity of this attack depends only on the

difficulty of the attacker guessing addint and addint+1. While

a naïve attacker might attempt to enumerate the entire space of

2seedlen possibilities, we show that in practice implementations

use low-entropy or predictable data such as timestamps for this

parameter. This makes the enumeration task feasible, requiring

as little as 221 work to find the correct values for both addint
and addint+1 values in some implementations.

In the next section, we evaluate the practicality of this

attack in the context of cache side-channel attacks on popular

CTR_DRBG implementations. We then evaluate the impact of

CTR_DRBG state recovery on the security of TLS.

V. S TAT E R E C O V E RY AT TA C K

In this section we demonstrate the practicality of the

attack of Woodage and Shumow [87]. More specifically, we

demonstrate recovery of the CTR_DRBG state variables K
and V via a cache side-channel attack against AES as used

in different CTR_DRBG implementations. We begin with an

overview of the popular implementations we targeted.

A. Implementation Deep Dives

We examined the CTR_DRBG parameter choices of four

implementations representing diverse use cases: the NetBSD

operating system, the Fortinet FortiVM virtualized network

device, and two versions of OpenSSL. We identify limitations

(if any) on the number of bytes that may be requested in a

single call to the PRG, and highlight implementations’ use of

additional entropy. These parameters determine the viability

of the state recovery attack. Next, as an implementation may

be able to ‘recover’ from compromise following a reseed, we

also determine how frequently mandatory reseeds occur and

if such a reseed incorporates sufficient entropy.

FortiOS. We analyzed FortiOS version 5, the second-

most recent major release of Fortinet’s network operating

system for their hardware and virtual appliances. The operating

system is an embedded Linux distribution with proprietary

kernel modules that perform device-specific functionality. The

software is used both on embedded devices and to operate

VMs that perform virtualized network functions.

After reverse-engineering the operating system binaries, we

discovered that FortiOSv5 replaces Linux’s default implemen-

tation of /dev/urandom with the nist_rng library [40]. We

note that [20] analyzed FortiOSv4 and found that it too replaces

the system’s default PRG with a FIPS certified design. Both

FortiOS v4 and v5 use OpenSSL to provide basic cryptographic

functionality, which as instantiated, relies on /dev/urandom.

While the original OpenSSL uses its own PRG, Fortinet’s

override makes OpenSSL fall back to an unprotected T-table-

based AES implementation based on the nist_rng library.

The FortiOS CTR_DRBG implementation does not use

additional entropy on each update and has no explicit reseeding.

It returns an error if more than 99,999 blocks are cumulatively

requested from an instantiated PRG over its lifetime. It there-

fore lacks meaningful protection against state compromise.

NetBSD. The NetBSD operating system uses CTR_DRBG

as the default source of system randomness. The kernel uses

the nist_rng library with 128-bit AES as the default underlying

cipher. We examined the kernel source code and single-stepped

through a running kernel to verify our findings. As in the

FortiOS case, the AES implementation is software-based with

unprotected T-Table accesses, based on the nist_rng library.

However, the OS limits requests to a maximum of 512 bytes

from the PRG in a single call, increasing the difficulty of our

proposed attack.

On each generate call, the state is updated using additional

entropy from rdtsc, a high resolution 64-bit CPU counter,

truncated to the low 32 bits. Finally, NetBSD schedules an

additional reseed after 231 − 2 calls to the PRG.

OpenSSL FIPS Module. We examined the OpenSSL FIPS

module, which supports only OpenSSL 1.0.2. This implemen-

tation is one of a small number of libraries that a manufacturer

can use to be FIPS compliant without submitting the product

for certification [24]. The module uses CTR_DRBG with a

user configurable key length. Notably, while OpenSSL 1.0.2

FIPS uses hardware instructions for AES encryption, the

CTR_DRBG implementation uses a lower-level interface for

AES. Instead of selecting the best implementation available (as

the AES interface used for encryption does), the lower-level

interface used by CTR_DRBG uses a hand-coded T-Table AES

implementation. On each generate call, the state is updated

using the time in microseconds, a counter, and the PID. The

FIPS module reseeds the PRG after 224 calls to generate.

OpenSSL 1.1.1. The default PRG in OpenSSL 1.1.1, the most

recent major release, is a CTR_DRBG implementation derived

1246

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 12,2022 at 02:23:34 UTC from IEEE Xplore. Restrictions apply.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bytes Correctly Recovered

0

5

10

15

20
C
o
u
n
t

Fig. 2: With the prefetcher enabled, our state recovery
technique often only partially recovers the 16-byte AES
key. We depict the frequency with which a given number
of bytes were recovered, across 100 trials.

from that of OpenSSL FIPS. It defaults to 256-bit AES with

user-configurable support for 128-bit and 192-bit AES. Unlike

version 1.0.2 it does default to using hardware instructions for

AES, so it is not vulnerable to our side-channel attack.

B. Side Channel Attacks on AES-128

T-Table AES is the canonical target for cache side channel

attacks. Extensive prior work has demonstrated key extraction

from table-based implementations [5, 32, 38, 64, 97]. Since

CTR_DRBG provides an attacker visibility to the AES cipher-

text (from the PRG output), we implemented the key recovery

attack of Neve and Seifert [58] on the last encryption round

of AES, which relies on monitoring cache access patterns. We

outline the technical details in Appendix A.

C. Evaluation of State Recovery

Attack Scenario. Our attack scenario is as follows. First,

we assume the attacker can execute unprivileged code on a

target machine. Next, a victim process on the same machine

uses CTR_DRBG and makes a call to generate, requesting

about 2 KB of pseudorandom output. The attacker then uses

Flush+Reload to monitor cache accesses during the AES

operations inside the CTR_DRBG, and recovers the PRG state

using the techniques described above. Our experimental setup

instantiates this scenario in a concrete setting.

Targeted Software. We targeted OpenSSL 1.0.2 configured to

use the nist_rng library with AES128 as the underlying block

cipher for the PRG. Beyond the implementations mentioned

in Section V-A, the nist_rng library is used by libuntu (a C

implementation of NTRUEncrypt) and the XMHF hypervisor,

among others. Recall, the nist_rng library uses a leaky T-table

based AES implementation and does not support AES-NI.

Hardware. We performed our experiments on a desktop

equipped with an Intel i7-3770 Quad Core CPU, with 8GB

of RAM and 8MB last level cache. The machine ran Ubuntu

17.10 (Kernel 4.13.0). To ensure fair comparison, we fixed the

initial state of the random number generator to be the same

uniformly sampled state for all experiments in this section.

Empirical Results. In 100 trials with the prefetcher disabled

we were always able to recover the state, with an average

false positive rate of 4.58% and false negative rate of 5.01%.

As shown in Fig. 2, with the prefetcher enabled our attack

succeeded in 12.0% of trials with average false positive rate

28.5% and false negative rate 1.94%. State recovery took an

average of 19s in both cases, using the same hardware.

V I . AT TA C K I N G T L S

In this section we show how recovering the PRG state from

CTR_DRBG leads to the attacker being able to compromise

long-term TLS authentication keys. While past work illustrates

how PRG failure can compromise TLS server keying mate-

rials [18–20], we build an attack targeting client keys. We

begin with necessary background on TLS and cryptographic

primitives.

A. RSA Background

RSA is a public-key encryption method that can be used as

a key exchange method in TLS 1.2 and earlier. RSA is not

included as a key exchange mechanism in TLS 1.3.

RSA Cryptosystem. An RSA public key consists of a public

encryption exponent e and an encryption modulus N . The

private key is the decryption exponent d, which satisfies d =
e−1 mod φ(N), where φ(N) = (p − 1)(q − 1) is the totient

function for an RSA modulus N = pq, and p, q are primes.

RSA Padding. An RSA-encrypted key exchange begins

by padding the contents of the key exchange message using

PKCS#1 v1.5 [41] padding as depicted in Fig. 3. PKCS#1

v1.5 padding is not CCA-secure and has led to numerous

cryptographic attacks against RSA in practice [9, 26]. Yet, it

remains by far the most common padding method where RSA

encryption is still used, including versions of TLS prior to 1.3.

Let m be a message to be encrypted, and pad(m) be the

message with PKCS#1v1.5 padding applied. The encryption

m is the value c = (pad(m))e mod N . The padded message

pad(m) can be recovered by the decrypter by computing

pad(m) = cd mod N . In normal RSA usage, the decrypter then

verifies that the padding is correctly formatted, and strips it

off to recover the original message m.

RSA-PSS. RSA-PSS is a probabilistic signature scheme

with a formal security proof [54]. The padding mechanism

is designed to avoid the flaws in PKCS#1 v1.5. The scheme

produces a padded message from a salt s and the input message

m. The salt can be a maximum of len(m) + h bytes in length,

where h is the length of the hash function output. RFC8446

(August 2018) updates TLS 1.2, adding optional support for

RSA-PSS signatures [56, 72], but specifies that “the length of

the Salt MUST be equal to the length of the [digest] output”.

B. ECDSA

ECDSA is a standardized public key signature algorithm

[44]. The global parameters for an ECDSA key pair include

a pre-specified elliptic curve C with base point G of order n.

The signer’s private key is a random integer 1 < dA < n and

the public key is Q = dAG.

To sign a message m, the signer generates a random integer

nonce 1 < k < n. The signature is the pair r = (kG)x mod n
and s = k−1(H(m) + rdA) mod n, where Px represents the x-

coordinate of an elliptic curve point P, and H(m) is the hash

of the message m using a collision-resistant hash function

1247

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 12,2022 at 02:23:34 UTC from IEEE Xplore. Restrictions apply.

00 02 00Padding 48-byte PMS

Fig. 3: PKCS#1v1.5 RSA encryption padding appends a
pseudorandom padding string to the message, together
with some fixed bytes. The padding block is filled with
k − 3 − � non-zero bytes that are generated by a PRG,
where k is the byte-length of the modulus and � is the
byte-length of the message to be encrypted.

H. Next, if an attacker learns the value of the nonce k, she

can compute the private key dA from the signature as dA =

(sk − H(m))r−1 mod n. We omit the details of the signature

verification procedure, as they are orthogonal to our attacks.

C. TLS Handshake Protocol

We describe the details of the TLS 1.0–1.2 handshake

protocol required for our attack. A TLS handshake begins

with a ClientHello message containing a 32-byte nonce along

with a list of supported cipher suites. The standard specifies

that the nonce should consist of a four-byte timestamp and 28

bytes of raw output from a pseudorandom number generator.

The ServerHello message contains a similar nonce and the

server’s choice of cipher suite. We specialize to the case

of RSA key exchange with mutual authentication, an option

that is enabled for higher-security deployments, for VPN-over-

TLS, and other instances where the server needs assurance

of the client’s identity. For these cipher suites, the server

then sends a Certificate message with its certificate chain, a

CertificateRequest message, and a ServerHelloDone message.

The client checks the server certificate, generates a 48-byte

premaster secret (PMS) and encrypts it to the server’s public

key from the certificate. The PMS and padding formatting are

shown above in Fig. 3.

The client then sends the RSA-encrypted PMS in a Clien-

tKeyExchange message, sends its own certificate in a Certifi-

cate message, and a CertificateVerify message containing a

signature computed over a transcript of the handshake thus far,

that proves it possesses the relevant private key.

On receiving the encrypted ClientKeyExchange, the server

decrypts the message, verifies the structure of the padding has

the correct structure, and extracts the PMS. The server then

verifies the client certificate. Both client and server then derive

symmetric encryption and authentication keys by applying a

key derivation function to the PMS and the client and server

nonces. Both sides exchange messages to authenticate the

handshake, then begin transmitting encrypted traffic.

D. Finding Enough Randomness in TLS

The state recovery attack described in Section V required

1996 bytes of output from the PRG. Thus, for our cache side-

channel attack to work at the protocol level, we needed to

find places in the handshake where a single PRG call would

request enough output for an attacker to feasibly carry out state

recovery. We evaluated the TLS protocol for potential sources

of large or variable length randomness and settled on three

possibilities: the ExtendedRandom TLS extension, RSASSA-

PSS padding, and RSA PKCS#1 v1.5 padding.

ExtendedRandom TLS Extension. ExtendedRandom is

a non-standard extension to TLS that was proposed to the

IETF [25] to permit clients to request up to 216 − 1 bytes

of randomness from the server. While our attacks (as well

as those of [19, 20]) may have been able to make use of

the increased output from the server’s generator to recover

secret information, there are no known implementations with

a functional implementation of this extension [25].

RSA-PSS. We evaluated whether the generation of the random

salt for RSA-PSS signatures provided a viable attack vector.

Under the PSS specification, for a message of 214 bytes, the

maximum salt length allowed is 2016 bytes, or 126 blocks of

PRG output, sufficient for our state recovery attack. However,

since RFC8446 [72] restricts the salt length when PSS is used

in TLS1.2, an attacker in this context cannot observe enough

encryptions from calls to the underlying PRG.

PKCS#1 v1.5 Padding in TLS. When a TLS handshake is

performed with an RSA cipher suite, the client generates the

32-byte PMS and encrypts it under the server’s RSA public

key, transmitting it in the ClientKeyExchangeMessage. If the

malicious sever uses a 16384-bit RSA modulus, the client

must generate 2,013 padding bytes, equivalent to 126 blocks

of PRG output. This is enough blocks for us to mount the state

recovery attack. We thus target this mode of TLS.

E. Targeting TLS Clients

Unlike the attacks in [18–20], which compromise the

server’s PRG, we compromise the state of the PRG used by

the TLS client, since the client is the party that generates the

encrypted key exchange message. However, similar to those

works, we use the recovered state to predict future outputs of

the PRG. In our case, this allows us to recover the client’s

long-term authentication key.

Threat Model. We assume an attacker who can induce the

client to connect to a malicious TLS server, and that the client

uses ECDSA for digital signatures. We also assume that the

attacker is capable of running unprivileged code on the client.

Attack Overview. The attacker configures her server to

support only TLS versions 1.0 through 1.2 (and not 1.3),

and to require RSA key exchange. The client connects and

begins the TLS handshake procedure. Since the RSA PKCS

padding generation procedure requires the client to generate

pseudorandom bytes, the attacker can use the cache leakage

traces collected during the generation of the PKCS padding

to recover the client’s PRG state via the method described in

Section V. With the client’s PRG state successfully recovered,

the attacker predicts the subsequent PRG output and thus is

able to compute the ECDSA nonce that the client generates

in the course of producing the digital signature for the

CertificateVerify message. As outlined in Section VI-B, an

attacker who knows the nonce used to generate an ECDSA

signature can trivially recover the long-term private key used

for client authentication, even if that key was generated in a

secure manner. Recovering the signing key allows the attacker

to impersonate the client. This may allow the attacker to

1248

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 12,2022 at 02:23:34 UTC from IEEE Xplore. Restrictions apply.

access TLS-protected resources that are served only to an

authenticated client. Our attack proceeds as follows:

1) Victim Client Connects to an Attacker-Controlled
Server. A client with an ECDSA certificate is manipulated

into visiting a web page with an attacker controlled script.

The script initiates TLS handshakes with RSA cipher suites,

to an attacker-controlled server. The server transmits an

RSA certificate and requests mutual authentication.

2) Recovering PRG State. The client’s software encrypts

the TLS premaster secret using the server’s RSA public

key, generating PKCS#1v1.5 padding proportional to the

size of the certificate. The attacker simultaneously conducts

the state recovery attack explored in Section V.

3) ECDSA Signature Generation. The client transmits

its certificate and generates a random nonce to sign the

CertificateVerify message using ECDSA. The client then

transmits the signed CertificateVerify message to the server.

4) Recovering the Client’s Nonce. The attacker conducts an

offline search for entropy and addin parameters used by the

PRG to generate the client’s ECDSA nonce. The attacker

checks candidates by recomputing the ECDSA signature

and validating it against the client-transmitted signature.

5) Key Recovery. The attacker computes the client’s ECDSA

private key and can now impersonate the client.

Performing Nonce Recovery. To perform Item 4, the state

of the client’s PRG must be advanced to the point at which

ECDSA nonce generation occurs. The attacker can only wind

the generator forward, and at each call to the generate and

reseed functions the attacker must guess the entropy and

additional input parameters. Thus, the attacker must pay close

attention to implementation-specific details surrounding the

ordering of calls to the PRG. We illustrate this challenge using

OpenSSL 1.0.2, which we used as our baseline implementation

for our nonce-recovery attacks.

F. Using PKCS#1 v1.5 in OpenSSL 1.0.2 for Nonce Recovery

We begin by describing the steps performed by OpenSSL

during the establishment of a TLS connection to generate the

random PKCS#1 v1.5 padding and ECDSA nonce. For ease

of reference, we label each step of these processes. We then

describe our end-to-end attack on OpenSSL 1.0.2.

1. Initial Padding Generation. The output of the PRG is fed

into an n-byte buffer to be used for PKCS#1 v1.5 padding,

where n is the length of padding required (in our case

n = 1996). The state is updated twice, once before the bytes

are generated and once after. State compromise occurs after

the first call to update, but prior to the second.

2. Padding Zero-Fill. PKCS#1 v1.5 does not allow 0x00
bytes to be present in the random padding, so if there are z
0x00 bytes present in the PKCS output buffer, OpenSSL

makes at least z more requests for output from the PRG,

one for each byte. If any of these additional requests also

result in a 0x00 byte, OpenSSL makes repeated requests to

the PRG until the output is non-zero. The output from these

requests is used to replace the null bytes in the padding

to produce a valid non-null padding string under PKCS#1

v1.5. Within each request for random bytes, the PRG state

is advanced twice. Both updates use the same underlying

additional input.

3. RAND_seed. The ECDSA signing routine tries to reseed

OpenSSL’s RNG via RAND_seed. The SHA256 hash of

the TLS handshake transcript is used as external entropy.

4. RAND_add. A call to RAND_add is made as part of

bnrand, which is used to generate a random integer in a

given range. Time in seconds is used as external entropy.

5. GenNonce. OpenSSL then generates the ECDSA nonce.

Within the call to the CTR_DRBG generate function, the

state is updated before the nonce value is finally produced.

Notably, Steps 3 and 4 call functions from the OpenSSL PRG

API, which as discussed in Section VI-G does not always

reseed or update CTR_DRBG.

Causing a Large Number of Random Byte Generations.
To perform the attack, the attacker must observe side-channel

leakage during the generation of a large amount of randomness.

Moreover, to recover the PRG’s state, the attacker must learn

the values of the victim-generated randomness. In our attack

scenario, the attacker could cause a victim client to connect

to the attack server using a malicious script served by an ad

network on a website the user would otherwise normally visit.

The attacker’s server is configured to support only RSA key

exchange, and deliberately serves a 16534-bit RSA certificate,

which is the maximum size that an OpenSSL client will accept

without throwing an error. This is due to deliberate, hard-

coded limits on message sizes that OpenSSL will accept, in

the interest of preventing denial of service attacks [61, 63].

Next, while encrypting the PMS to the server’s 16534-bit

RSA public key to generate the ClientKeyExchange message

for the TLS handshake, the client generates 1,996 bytes of

PKCS#1v1.5 padding output, which, if using CTR_DRBG,

gives the server an opportunity to conduct a side-channel attack

against 125 AES encryptions. The attack server learns the

value of the padding generated by the client by decrypting

the padded RSA-encrypted message using its private key. The

attacker then recovers the PRG state via the method described

in Section V, using the decrypted padding as the ciphertexts.

The Problem of Padding Zero-Fill. As noted above, to

comply with the PKCS standard, there must be no 0x00
bytes in this padding. OpenSSL complies by first generating

padding of the total length required, and then replacing each

null byte with output from further calls to the PRG, each used

to replace one zero byte. To encrypt to the malicious server’s

large certificate, OpenSSL generates 1,996 bytes of output for

padding used as per Fig. 3. In expectation, a ciphertext will

have eight such 0x00 bytes that need to be replaced.

Next, for each 0x00 byte in the padding, the generator

will have advanced an additional time. Since the attacker must

brute force over the additional entropy added at each step, this

increases the search space exponentially in the number of bytes

generated in Step 2 to recover the final PRG state.

Bypassing RAND_add. However, as the initial 1996

padding bytes (generated during the initial Padding Generation

step) have a uniform distribution over the 256 possible byte

1249

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 12,2022 at 02:23:34 UTC from IEEE Xplore. Restrictions apply.

values, the probability of the padding not containing 0x00
is (255/256)1996. We therefore expect that once every 2470
handshakes, the padding generated after the Padding 1 step will

not require additional calls to CTR_DRBG to produce a valid

PKCS#1 v1.5 padding string. Combining this with our success

rate for state recovery in Section V-C, an attacker recovers the

state, on expectation, once in every 218 handshakes.

Nonce Recovery. With the PRG state recovered, the attacker

proceeds to recover the client’s ECDSA nonce. Since the

nonce is generated in a new call to the PRG, the PRG

is reseeded between our state recovery attack and nonce

generation. An attacker must therefore obtain the values used

during RAND_seed and RAND_add (Steps 3 and 4). The exact

strategy of recovering these values is implementation-specific.

G. Implementation Choices and Nonce Recovery

In this section we describe how implementations use the

addin parameter, and how they explicitly reseed the random

number generator. We describe how this impacts our ability

to recover the value of addin and entropy used during

RAND_seed and RAND_add (Steps 3 and 4) in Section VI-F.

FortiOS. FortiOS does not implement RAND_seed and

RAND_add, and instead relies on the nist_drbg library’s inter-

nal reseed counter. As a result, RAND_seed and RAND_add

do not cause a state update, reducing the attack complexity.

Furthermore, as FortiOS does not use the optional additional

input for calls to generate, the PRG can be wound forward

without the offline search for additional input.

Custom Parameters for FortiOS. We modify the For-

tiOS implementation to illustrate that even if it were to

improve its reseeding and updating strategies, the implemen-

tation can be attacked in the absence of sufficiently high-

quality entropy input. To evaluate this, we modified the

FortiOS RAND_METHOD behavior to cause it to reseed during

RAND_seed and RAND_add. Moreover, we added support

for the additional data parameter, filling it with a microsecond

timestamp to emulate OpenSSL FIPS.

OpenSSL FIPS. The OpenSSL 1.0.2 FIPS module also

does not reseed the CTR_DRBG during RAND_seed and

RAND_add. Instead, these calls add the entropy to a general

pool from which the PRG can later be reseeded with a call

to reseed in compliance with SP 800-90A. We estimated the

amount of entropy added during generate calls to be 12 bits.

OpenSSL 1.1.1. In OpenSSL 1.1.1 (the latest version at

the time of writing) the maintainers rewrote much of the

random number generation API. Due to the significant changes,

this code was professionally audited twice [2, 71], both times

finding only minor flaws with the PRG implementation. The

implementation gathers additional input from a variety of

sources and feeds it into an entropy pool. These include system

event timing data, time, thread ids and output from the OS or

hardware random number generators. Given this complexity,

we did not estimate the entropy added in reseeding.

The ECDSA nonce generation mechanism in OpenSSL 1.1.1

was also improved. The nonce is generated from a hash of the

private key, the transcript, and PRG output. The inclusion of

secret data ensures that even if the PRG is compromised, the

nonce cannot be recovered. Together, these measures preclude

both state and nonce recovery.

NetBSD. The NetBSD kernel provides a source of random

numbers that can be used by a TLS implementation. We

consider an implementation that, like FortiOS, chooses to

source random numbers for OpenSSL from the system PRG

without modification. NetBSD provides additional data in to

CTR_DRBG in the form of the least significant 32 bits of the

rdtsc cpu counter. If this counter is not available, NetBSD uses

the kernel’s current time in microseconds, and further falls back

to an integer counter if the kernel clock is not yet running. It is

not possible for applications to add further entropy as NetBSD

does not externally expose the reseed and update functions,

and thus we do not model any additional entropy introduced

by RAND_seed and RAND_add.

H. Evaluation

We empirically evaluate the difficulty of extracting ECDSA

signing keys from TLS clients given the different imple-

mentation choices described in Section VI-G. In order to

evaluate the effects of different parameter choices on attack

complexity, we reverse-engineered the FortiOS CTR_DRBG

implementation and reimplemented it ourselves using the

nist_rng library, so that we could easily adjust parameters and

hook it into implementations. We modeled attack difficulty

against the other implementations by adjusting addin and

reseeding behaviors to match the descriptions in Section VI-G

of each implementation.

The Victim. For our victim TLS client, we used the sample

TLS client code available in the OpenSSL documentation [60],

configured to use mutual authentication and the nist_rng library

with our choice of modeling parameters. We configured the

client to authenticate using an ECDSA certificate with NIST

P-256. For the ECDSA nonce, we used the raw PRG output,

which matches the behavior of all implementations considered

in Section VI-G, except OpenSSL 1.1.1.

The Malicious TLS Server. Our malicious server was the

default OpenSSL tool, instrumented to output TLS transcripts

and ECDSA signatures, and configured to support only RSA

key exchange cipher suites with a 16384-bit RSA certificate,

the largest allowed key size as discussed in Section VI-F.

PRG State Recovery for Winding Forward. After a TLS

connection to the malicious server, we use Flush+Reload to

recover the PRG state, as described in Section V. We then brute

forced addin and additional entropy to recover the ECDSA

nonce, which consists of raw PRG output.

Our ability to wind the generator forward largely depends

on the quantity of entropy injected between state recovery and

nonce generation. Table I summarizes the entropy sources and

brute force search space for each implementation.

Using Side-Channel Information for Space Reduction. We

note that the attacker can use the same cache side-channel

used for state recovery to reduce the search space over the

additional entropy sources. By placing additional tickers and

using timing data acquired during the state recovery process,

1250

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 12,2022 at 02:23:34 UTC from IEEE Xplore. Restrictions apply.

Target Sources Search Reduced CPU
Space Space Time

OpenSSL FIPS time, PID 224 221 30 minutes

counter

NetBSD rdtsc 232 221 30 minutes

FortiOS none 0 0 N/A

Custom Params time 248 243 200 years

TABLE I: Nonce Recovery Search. We calculated the search
space for the attack described in Section VI-G. We extrapolated
custom parameter timing from smaller searches on our test
machine. OpenSSL 1.1.1 is excluded due to its non-vulnerable
nonce generation mechanism. The full search space corresponds
to the search complexity of all possible timestamps of that size,
and the reduced space corresponds to a search of one standard
deviation from the mean required search, starting from the
approximate timing of the encryption operation we gained from
our timing attacks, calculated across 100 trials.

we narrow down the set of timestamps or CPU counter values

that we need to search. We empirically evaluate the amount

of data that can gained through the instrumentation already in

place for conducting state recovery in Table I as well. We note

the entropy brute forcing is highly parallelizable, because after

the SSL/TLS handshake has been performed, each element of

the search space can be tested independently.

Empirical Results. Our attack succeeded against FortiOS

in negligible time (after state recovery) and against OpenSSL

FIPS after 30 minutes (221 work) using the hardware from

Section V-C. The search space for the custom parameters was

beyond our computational capabilities, and we terminated our

search after one hour. We tabulate our results in Table I. While

our experimental results are limited by our CPU’s speed of

≈ 222 elliptic curve scalar multiplications per hour, [84] achieve

a rate of 235 operations per hour using a commodity GPU. We

anticipate that using their setup, the custom parameters search

would be completed within two weeks.

Handling AES-256. To demonstrate key recovery under

the constrained set of known ciphertexts available in the TLS

setting of Section VI, we implemented our attack using AES-

128. In Section VII, we handle AES-256 in the SGX setting.

V I I . F U L L E N T R O P Y I M P L E M E N TAT I O N S

The attack in Section VI relies on both the ability to observe

the PRG’s output and brute force the limited entropy of the

state update. However, we now argue that these requirements

are not fundamental. More specifically, by carrying out a

higher-resolution cache attack, we can develop a blind attack

in which the attacker can observe the victim’s cache access

patterns but not the PRG output. Furthermore, our attack only

requires observing two AES encryptions and is thus feasible

even when the update entropy is too high to brute force.

To achieve the higher-resolution cache attack however, we

require a stronger side-channel adversary: one who can observe

the cache accesses during AES encryption at a high temporal

resolution. Past research [34, 81, 85] has demonstrated that a

side-channel adversary with control of the operating system

may have access to high resolution cache data when co-located

with a victim running within an SGX enclave. This setting is

congruent with the threat model for SGX enclaves.

We begin with background on SGX, cache attacks on SGX,

and the SGX threat model (Section VII-A). We then present our

novel differential cryptanalysis technique for exploiting side-

channel information (Section VII-B). Finally, we evaluate our

attack on an SGX port of the mbedTLS library (Section VII-C).

A. Secure Enclave Technology

Intel Software Guard Extensions (SGX) [33] is an extension

of the x86 instruction set that supports private regions of

memory called enclaves. The contents of these enclaves cannot

be read by any code running outside the enclave, including

kernel and hypervisor code. This in theory allows a user-level

process to protect its code and data from a highly privileged

adversary, such as a malicious OS or hypervisor.

Cache Attacks on AES Inside SGX. Although SGX is

intended to protect the enclave from a malicious OS, our

work demonstrates how it can render enclaved code more
vulnerable to side-channel attacks. Specifically, the attacker

in Section V only observes access patterns at the granularity

of an encryption. In contrast, a malicious OS can obtain finer

resolution when the client executes in an enclave. This allows

us to observe cache accesses after each of the 16 accesses to

the AES T-tables in each encryption round [34, 81].

Threat Model. Following previous work [11, 55, 82, 90], in

this section we assume a root-privileged attacker who controls

the entire OS. This is consistent with the threat model described

in the SGX whitepaper [30], wherein an enclave guarantees

confidentiality and integrity, even in the presence of a malicious

OS or hypervisor. Unlike the attack described in Section VI,

we do not assume that the enclaved TLS client is willing

to connect to a malicious attacker-controlled server, or uses

imperfect PRG reseeding.

B. Differential Cryptanalysis with side-channel Leakage

We provide the additional details about AES required for the

differential attack. AES is a substitution-permutation cipher [8]

that operates in a sequence of rounds on a 128-bit internal state

S. Each round mixes the state and combines the mixed state

with a round key. For a plaintext x, the initial state is S0 =
x ⊕K0. Each consecutive round calculates Sj+1 = P(Sj) ⊕Kj+1,

where P is the state mixing function and Kj is the key for the

j th round. In efficient software implementations, the mixing

step is commonly implemented using four T-tables. Each byte

of the state selects one entry from a T-table and, since the

T-table entries are 32 bits wide, each state bytes affects four

consecutive bytes in the mixed state. For example, we can

calculate the first four bytes of state Sj+1 by:

Sj+1,0..3 = T0[Sj,0] ⊕ T1[Sj,5] ⊕ T2[Sj,10] ⊕ T3[Sj,15] ⊕ Kj+1,0..3 (1)

As before, our cache attack targets accesses to these T-tables.

Because we cannot distinguish between entries in the same

cache line, the cache leaks only the four most significant bits

(MSBs) of each byte of the state in each round. Let 〈〉U denote

setting the four least significant bits of each byte to zero, then

1251

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 12,2022 at 02:23:34 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3 Find possible guesses for the last state 0 byte.

1: function L A S T S TAT E 0 B Y T E(L0,0,15, Δ0,15, LΔ1,0..3)

2: GuessList0 ← Empty

3: for Nibble ← 0 to 24 − 1 do
4: G0,0,15 = L0,0,15⊕ Nibble

5: Δ1,0..3 = T3[G0,0,15] ⊕ T3[G0,0,15 ⊕ Δ0,15]
6: if 〈Δ1,0..3〉U = LΔ1,0..3 then
7: GuessList0.append(G0,0,15, Δ1,0..3)

8: return GuessList0

the leakage on byte k is Lj,k = 〈Sj,k〉U . With a known plaintext

x, we can use Lj,k to recover the 4 MSBs of every byte of K0
because 〈K0,k〉U = 〈xk〉U ⊕ L0,k .

Unfortunately, in our blind attack setting we do not know

x. Consequently, we cannot learn information on K0 from

the leakage of the first round. Instead, we use the known

difference between the plaintexts used in consecutive rounds

of AES-CTR to recover the AES state. From the state, we can

recover the keys, plaintexts, and ciphertexts. This is in close

correspondence to the changes targeted in differential fault

attacks [7]. We develop a similar analysis using side-channel

leakage as the basis of our attack.

Notation. We use the following notation:

1) T0..T3 is the array of 4 AES T-Tables, where Ti[j] is the

value in location j of Table i.
2) 〈x〉U denotes the value of x with the lower four bits

(nibble) in each byte set to 0.

3) Li, j,k is the value leaked from the cache attack for byte

k of round j in trace i. The leaked value is only the 4

MSBs and the lower nibble is always 0.

4) Si, j,k is the real value of the state byte k of round j in

trace i. Gi, j,k is our current guess for this byte.

5) RΔj,k the value of the differential S0, j,k ⊕ S1, j,k , and Δj,k

is our current guess for this value.

6) LΔj,k = L0, j,k ⊕ L1, j,k (lower nibble is always 0).

7) Kj,k is the key value of byte k of round j.

Differential Analysis. By analyzing the difference between

the state of two encryptions, we can recover state information

that is independent of the round keys. In AES-CTR, for two

consecutive plaintexts x0 and x1 we know that x1 = x0 + 1,

so with probability (255/256) the two plaintexts only differ in

the last byte by some value Δctr. As the state of round 0 is

simply the plaintext XOR with K0, the plaintext difference is

preserved and RΔ0,15 = Δctr. Using Equation (1) we get:

S0,1,0..3 =T0[S0,0,0] ⊕ T1[S0,0,5] ⊕ T2[S0,0,10]

⊕ T3[S0,0,15] ⊕ Ki+1,0..3

S1,1,0..3 =T0[S1,0,0] ⊕ T1[S1,0,5] ⊕ T2[S1,0,10]

⊕ T3[S1,0,15] ⊕ Ki+1,0..3

=T0[S0,0,0] ⊕ T1[S0,0,5] ⊕ T2[S0,0,10]

⊕ T3[S0,0,15 ⊕ RΔ0,15] ⊕ Ki+1,0..3

LΔ1,0..3 =L0,1,0..3 ⊕ L1,1,0..3 = 〈S0,1,0..3 ⊕ S1,1,0..3〉U

=〈T3[S0,0,15] ⊕ T3[S0,0,15 ⊕ RΔ0,15]〉U (2)

As 〈S0,0,15〉U = L0,0,15 we only need to try the 16 options

for the lower four bits until we find a value that satisfies

Equation (2) and recover S0,0,15 (see Algorithm 3). As RΔ0,15
is unknown, we run Algorithm 3 with each possible value

to retrieve the full set of candidates. However, as RΔ0,15 =
x0 ⊕ x0+1 only eight candidates are possible. The full key and

plaintext recovery procedures are described in Appendix B.

Using Three or More Traces. The above attack requires only

two traces to compromise the CTR_DRBG state. However, any

request for PRG output causes at least three encryptions, and

four when AES-256 is used as the underlying block cipher.

Our attack can be trivially extended to use the extra

encryptions to more efficiently eliminate candidates, which

aids in reducing the impact of noisy measurements.

Related Attacks. Roche et al. [73] demonstrate that a

powerful attacker who can generate arbitrary faults in the

key schedule can perform a blind attack on AES. Jaffe [39]

attacked counter mode encryption with an unknown nonce,

requiring 216 consecutive block encryptions. Ronen et al.
[74] demonstrated a blind attack on counter mode encryption

targeting the authentication MAC.

C. Evaluation

The Victim. We ran our experiments on a laptop equipped

with 16 GB of RAM and an Intel i7-6820HQ CPU clocked

at 2.7GHZ with an 8 MB L3 cache, running Ubuntu 16.04.

Similar to [89], we demonstrate the attack against mbedTLS-

SGX [96], an SGX port of the widely-used mbedTLS library.

To our knowledge, mbedTLS-SGX is the only library currently

available with a functional SGX-based HTTPS client.

Attack Procedure. We demonstrate an end-to-end attack

on a connection between the TLS client and www.cia.gov,

with all of the client’s cryptographic operations taking place

within the enclave. We first mounted a Prime+Probe attack to

recover the CTR_DRBG state used to generate the 256 bits

of the ECDH ephemeral private key (a total of five AES256

encryptions of an incrementing counter). Using the recovered

private key, we were able to calculate the premaster key and

subsequently decrypt the HTTPS communication. The details

of the side-channel attack are left to Appendix C.

Results. Due to high noise levels in some traces, our

attack recovered the PRG state in approximately 36% of

our 1000 trials. The online phase, during which we mounted

the Prime+Probe attack, took less than two seconds. The

offline phase, in which we recovered the state of the PRG

and decrypted the TLS stream, took negligible time. After

recovering the PRG state, we recovered the TLS symmetric

encryption keys and GCM IVs, and subsequently decrypted

the HTTPS request.

Attack Complexity. The complexity of the attack is

dominated by calculating the set of key candidates. Generating

each candidate requires 218 T-Table look-ups for each trace.

Eliminating candidates by decryption required negligible work.

We tested the number of remaining candidates in each step

experimentally, both in the noise-free case (via simulation over

500 random keys) and in the noisy case (1000 SGX attacks).

1252

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 12,2022 at 02:23:34 UTC from IEEE Xplore. Restrictions apply.

Performing the attack with two traces yields 1.13 ·29 and 1.52 ·
211 candidates for the noise-free and noisy cases respectively.

In simulation, three traces are sufficient for the analysis to

isolate the single correct key in each list. However, noise in

the real-world setting requires us to use an additional trace to

isolate the correct candidate, totaling to four traces.

V I I I . I M PA C T

In order to evaluate the impact of our findings, we scraped a

public database of security certificates released under NIST’s

Cryptographic Module Validation Program (CMVP).

Government Certification. The CMVP allows vendors to

certify that their cryptographic modules meet minimal require-

ments to sell to the United States and Canadian governments.

In order to comply with FIPS 140-2, implementations must

use one of the PRGs described in SP 800-90A.

Certification can apply narrowly to a specific product model,

or apply to a product line. Most major vendors of network

devices and operating systems certify their products.

Database Scraping. We scraped a public-facing database of

CMVP certifications on May 13, 2019 to assess the potential

impact of our findings. CTR_DRBG was the most popular

design, supported by 67.8% of the implementations in the

database. Of 2498 implementations present, 1694 (67.8%)

supported CTR_DRBG. Of these, 461 (25%) exclusively sup-

ported AES-128, 1163 (69%) supported AES-128 along with

other ciphers, and 1227 (72%) supported AES-256. The CMVP

database also lists whether the manufacturer enabled prediction

resistance for the DRBG implementation. Of the 1694 total

implementations that supported CTR_DRBG, 66 provided no

information about prediction resistance, 618 supported use

of the DRBG in either mode with the default unspecified,

433 explicitly enabled prediction resistance, and 577 did

not support prediction resistance. Among the CTR_DRBG

implementations, 85 did not use a derivation function and

1137 did not support an alternate DRBG algorithm.

I X . D I S C U S S I O N

Limitations. Our results rely on a victim’s use of T-Table

AES, which has long been known to leak information via side

channels. However, as illustrated in this work, T-Table AES

is still used by many modern implementations. In the non-

SGX setting, our TLS attack requires code execution on the

client, and succeeds only after thousands of handshakes. This

potentially allows for detection of an on-going attack. While

we demonstrate our SGX attack against the only library that

provides a working end-to-end example of an HTTPS client,

the Intel-supported SGX-SSL library [37] (which does not

provide support for TLS) uses SGX’s hardware-based RDRAND
PRG and therefore is not vulnerable to a T-Table based attack.

Countermeasures. CTR_DRBG’s flaws, both theoretical

and practical, suggest that implementations need to take great

care when choosing this design. Where FIPS compliance is

required, HASH_DRBG and HMAC_DRBG give better secu-

rity guarantees [87]. Where CTR_DRBG cannot be replaced,

implementers should use AES hardware instructions, limit the

quantity of data that can be requested in a single call, reseed

frequently, and populate addin with high quality entropy,

to provide defense in depth against our attacks. In general,

constant-time code should be used for all cryptographic appli-

cations, unless hardware support (e.g., AES-NI) is available.

Mismatches Between Theory and Practice. Significant

effort has been dedicated to formalizing PRG security prop-

erties and designing provably secure constructions. However,

theoretical analyses of many of the most commonly-used de-

signs in practice (the Linux RNG [22], CTR_DRBG [87]) have

found that these designs do not meet basic security properties,

such as robustness against state compromise. Unfortunately,

implementers are often hesitant to adopt countermeasures

without a concrete demonstration of vulnerability.

The Fragility of ECDSA. The fragility of DSA and ECDSA

in the face of random number generation and implementation

flaws has been repeatedly demonstrated in the literature [12,

92]. Random number generation failure inevitably compro-

mises a single session or a signature, but DSA/ECDSA are

particularly vulnerable to compromise of long-term secrets. De-

terministic ECDSA [70] is the recommended countermeasure.

Future of FIPS. FIPS 140-3 is expected to contain

requirements for side-channel mitigations from the inclusion

of NIST SP 800-140F, which has yet to be issued and becomes

effective in September 2019. FIPS 140-2 CMVP certifications

will continue to be issued at least through 2021 [59]. This

is a promising step towards widespread deployment of side-

channel-resistant cryptography; however, it remains to be seen

how improved requirements for certifying modules will feed

back into the design and standardization of secure primitives.

Using RDRAND without a PRG. Using the built-in CPU

PRG to mitigate concerns with software PRGs is not a panacea.

In several SGX ports we have reviewed (including Intel’s

official port for OpenSSL [37]) the software PRG was replaced

with calls to the RDRAND instruction. While using the CPU’s

generator avoids software side-channels, the existence of hard-

to-discover bugs in PRGs integrated into CPUs [51, 88] mean

this feature is better used as one of many sources of entropy

for a provably secure software PRG.

A C K N O W L E D G E M E N T S

This work was supported by the National Science Founda-

tion under grant no. CNS-1651344, by the ISF under grant

number 1523/14, by gifts from Intel and AMD corporations,

and by the Defense Advanced Research Projects Agency

(DARPA) under contract FA8750-19-C-0531. Eyal Ronen is a

member of CPIIS.

R E F E R E N C E S

[1] T. Allan, B. B. Brumley, K. Falkner, J. van de Pol, and Y.
Yarom, “Amplifying side channels through performance
degradation,” in ACSAC, 2016.

[2] J.-P. Aumasson and A. Vennard, Audit of OpenSSL’s
randomness generation, 2018.: ostif .org/wp- content /
uploads/2018/09/opensslrng-audit-report.pdf.

[3] J. Austen, Pride and Prejudice. 1813.

1253

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 12,2022 at 02:23:34 UTC from IEEE Xplore. Restrictions apply.

[4] N. Benger, J. van de Pol, N. P. Smart, and Y. Yarom,
“‘‘Ooh aah... just a little bit” : A small amount of side
channel can go a long way,” in CHES, 2014.

[5] D. J. Bernstein, Cache-timing attacks on AES, https :
//cr.yp.to/antiforgery/cachetiming-20050414.pdf, 2005.

[6] ——, Fast-key-erasure random-number generators,
2017.: blog.cr.yp.to/20170723-random.html.

[7] E. Biham and A. Shamir, “Differential fault analysis of
secret key cryptosystems,” in CRYPTO, 1997.

[8] A. Biryukov, “Substitution–permutation (SP) network,”
in Encyclopedia of Cryptography and Security, H. C. A.
van Tilborg and S. Jajodia, Eds. 2011.

[9] D. Bleichenbacher, “Chosen ciphertext attacks against
protocols based on the RSA encryption standard
PKCS# 1,” in CRYPTO, 1998.

[10] J. Bonneau, Robust final-round cache-trace attacks
against AES, IACR ePrint archive 2006/374, 2006.

[11] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S.
Capkun, and A.-R. Sadeghi, “Software grand exposure:
SGX cache attacks are practical,” in WOOT, 2017.

[12] J. Breitner and N. Heninger, “Biased nonce sense:
Lattice attacks against weak ECDSA signatures in
cryptocurrencies,” in FC, 2019.

[13] S. Briongos, P. Malagón, J.-M. de Goyeneche, and J.
Moya, “Cache misses and the recovery of the full AES
256 key,” Applied Sciences, no. 5, 2019.

[14] Y. Cai, S. Ghose, Y. Luo, K. Mai, O. Mutlu, and
E. F. Haratsch, “Vulnerabilities in MLC NAND flash
memory programming: Experimental analysis, exploits,
and mitigation techniques,” in HPCA, 2017.

[15] M. J. Campagna, Security bounds for the NIST codebook-
based deterministic random bit generator. IACR ePrint
archive 2006/379, 2006.

[16] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B.
von Berg, P. Ortner, F. Piessens, D. Evtyushkin, and D.
Gruss, “A systematic evaluation of transient execution
attacks and defenses,” in USENIX Security, 2019.

[17] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp,
M. Minkin, D. Moghimi, F. Piessens, M. Schwarz, B.
Sunar, J. Van Bulck, and Y. Yarom, “Fallout: Leaking
data on Meltdown-resistant CPUs,” in CCS, 2019.

[18] S. Checkoway, R. Niederhagen, A. Everspaugh, M.
Green, T. Lange, T. Ristenpart, D. J. Bernstein, J.
Maskiewicz, H. Shacham, and M. Fredrikson, “On the
practical exploitability of dual EC in TLS implementa-
tions,” in USENIX Security, 2014.

[19] S. Checkoway, J. Maskiewicz, C. Garman, J. Fried, S.
Cohney, M. Green, N. Heninger, R.-P. Weinmann, E.
Rescorla, and H. Shacham, “A systematic analysis of
the Juniper dual EC incident,” in CCS, 2016.

[20] S. N. Cohney, M. D. Green, and N. Heninger, “Practical
state recovery attacks against legacy RNG implementa-
tions,” in CCS, 2018.

[21] C. Disselkoen, D. Kohlbrenner, L. Porter, and D. M.
Tullsen, “Prime+Abort: A timer-free high-precision L3
cache attack using Intel TSX,” in USENIX Security,
2017.

[22] Y. Dodis, D. Pointcheval, S. Ruhault, D. Vergniaud, and
D. Wichs, “Security analysis of pseudo-random number
generators with input,” in CCS, 2013.

[23] GnuPG Project, GnuPG, 2019.: www.gnupg.org.
[24] M. D. Green, Twitter thread on OpenSSL.: https://twitter.

com/matthew_d_green/status/1115013260783255558.
[25] ——, The strange story of “extended random”, 2017.:

blog . cryptographyengineering . com / 2017 / 12 / 19 / the -
strange-story-of-extended-random/.

[26] ——, Wonk post: Chosen ciphertext security in public-
key encryption (part 2), 2018.: blog.cryptographyengin
eering.com/2018/07/20/wonk-post-chosen-ciphertext-
security-in-public-key-encryption-part-2/.

[27] L. Groot Bruinderink, A. Hülsing, T. Lange, and Y.
Yarom, “Flush, Gauss, and reload – a cache attack on the
BLISS lattice-based signature scheme,” in CCS, 2016.

[28] D. Gruss, R. Spreitzer, and S. Mangard, “Cache tem-
plate attacks: Automating attacks on inclusive last-level
caches,” in USENIX Security, 2015.

[29] D. Gruss, C. Maurice, K. Wagner, and S. Mangard,
“Flush+Flush: A fast and stealthy cache attack,” in
DIMVA, 2016.

[30] S. Gueron, A memory encryption engine suitable for gen-
eral purpose processors, IACR ePrint archive 2016/204,
2016.

[31] S. Gueron and Y. Lindell, “GCM-SIV,” in CCS, 2015.
[32] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games -

bringing access-based cache attacks on AES to practice,”
in IEEE SP, 2011.

[33] M. H., Intel SGX for dummies (Intel SGX design
objectives), 2013.: software.intel.com/en-us/blogs/2013/
09/26/protecting-application-secrets-with-intel-sgx.

[34] M. Hähnel, W. Cui, M. Peinado, and T. Dresden, “High-
resolution side channels for untrusted operating systems,”
in USENIX ATC, 2017.

[35] N. Heninger, Z. Durumeric, E. Wustrow, and J. A.
Halderman, “Mining your Ps and Qs: Detection of
widespread weak keys in network devices,” in USENIX
Security, 2012.

[36] S. Hirose, “Security analysis of DRBG using HMAC in
NIST SP 800-90,” in WISA, 2009.

[37] Intel, Intel software guard extensions SSL, 2017.: github.
com/intel/intel-sgx-ssl.

[38] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar,
“Wait a minute! a fast, cross-VM attack on AES,” in
RAID, 2014.

[39] J. Jaffe, “A first-order DPA attack against AES in
counter mode with unknown initial counter,” in CHES,
2007.

[40] H. Jungheim, 2019.: henric.org/random/#nistrng.
[41] B. Kaliski, “PKCS #1: RSA encryption version 1.5,”

RFC 2313, 1998.
[42] W. Kan, Analysis of underlying assumptions in NIST

DRBGs, IACR ePrint archive 2007/345, 2007.
[43] N. Karimi, A. K. Kanuparthi, X. Wang, O. Sinanoglu,

and R. Karri, “MAGIC: Malicious aging in circuits/-
cores,” TACO, vol. 12, no. 1, p. 5, 2015.

1254

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 12,2022 at 02:23:34 UTC from IEEE Xplore. Restrictions apply.

[44] C. F. Kerry and P. D. Gallagher, FIPS PUB 186-4:
Digital signature standard (DSS), 2013.

[45] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee,
C. Wilkerson, K. Lai, and O. Mutlu, “Flipping bits
in memory without accessing them: An experimental
study of DRAM disturbance errors,” in ACM SIGARCH
Computer Architecture News, 2014.

[46] A. Klyubin, Some SecureRandom thoughts, 2013.: a
ndroid - developers . googleblog . com / 2013 / 08 / some -
securerandom-thoughts.html.

[47] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz,
and Y. Yarom, “Spectre attacks: Exploiting speculative
execution,” in IEEE SP, 2019.

[48] A. Kurmus, N. Ioannou, N. Papandreou, and T. P.
Parnell, “From random block corruption to privilege
escalation: A filesystem attack vector for Rowhammer-
like attacks,” in WOOT, 2017.

[49] A. Kwong, D. Genkin, D. Gruss, and Y. Yarom, “RAM-
Bleed: Reading bits in memory without accessing them,”
in IEEE SP, 2020.

[50] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M.
Peinado, “Inferring fine-grained control flow inside SGX
enclaves with branch shadowing,” in USENIX Security,
2016.

[51] H.-T. Leung, Redhat bug 1150286 - rdrand instruction
fails after resume on AMD CPU, 2019.: bugzilla.kernel.
org/show_bug.cgi?id=85911.

[52] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,
A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin,
Y. Yarom, and M. Hamburg, “Meltdown: Reading kernel
memory from user space,” in USENIX Security, 2018.

[53] K. Michaelis, C. Meyer, and J. Schwenk, “Randomly
failed! the state of randomness in current Java imple-
mentations,” in CT-RSA, 2013.

[54] P. R. Mihir Bellare, PSS: Provably secure encoding
method for digital signatures, 1998.

[55] A. Moghimi, G. Irazoqui, and T. Eisenbarth,
“CacheZoom: How SGX amplifies the power of
cache attacks,” in CHES, 2017.

[56] K. Moriarty, B. Kaliski, J. Jonsson, and A. Rusch,
“PKCS #1: RSA cryptography specifications version 2.2,”
RFC 8017, 2016.

[57] K. Mowery, S. Keelveedhi, and H. Shacham, “Are AES
x86 cache timing attacks still feasible?” In CCSW, 2012.

[58] M. Neve and J.-P. Seifert, “Advances on access-driven
cache attacks on AES,” in SAC, 2007.

[59] NIST, “Announcing issuance of federal information
processing standard (FIPS) 140-3, security requirements
for cryptographic modules,” 2019.

[60] OpenSSL, SSL/TLS Client, 2018.: wiki . openssl . org /
index.php/SSL/TLS_Client.

[61] OpenSSL software failure for RSA 16K modulus, 2016.:
mta .openssl .org /pipermail /openssl - users /2016- July /
004056.html.

[62] OpenSSL Software Foundation, User guide for the
OpenSSL FIPS object module v2.0, 2013.

[63] [openssl.org #4063] re: Client hello longer than 214

bytes are rejected, 2015.: mta.openssl .org/pipermail/
openssl-dev/2015-September/002860.html.

[64] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks
and counter-measures: The case of AES,” in CT-RSA,
2006.

[65] C. Percival, “Cache missing for fun and profit,” BSDCan,
2005.

[66] C. Pereida García and B. B. Brumley, “Constant-time
callees with variable-time callers,” in USENIX Security,
2017.

[67] N. Perlroth, Government announces steps to restore
confidence on encryption standards, 2013.: bits.blogs.
nytimes.com/2013/09/10/government-announces-steps-
to-restore-confidence-on-encryption-standards.

[68] P. Pessl, L. Groot Bruinderink, and Y. Yarom, “To
BLISS-B or not to be: Attacking strongSwan’s imple-
mentation of post-quantum signatures,” in CCS, 2017.

[69] R. Poddar, A. Datta, and C. Rebeiro, “A cache trace
attack on CAMELLIA,” in InfoSecHiComNet, 2011.

[70] T. Pornin, “Deterministic usage of the digital signature
algorithm (DSA) and elliptic curve digital signature
algorithm (ECDSA),” RFC 6979, 2013.

[71] Quarkslab SAS, OpenSSL security assessment, 2019.:
ostif . org / wp - content / uploads / 2019 / 01 / 18 - 04 - 720 -
REP_v1.2.pdf.

[72] E. Rescorla, “The transport layer security (TLS) protocol
version 1.3,” RFC 8446, 2018.

[73] T. Roche, V. Lomné, and K. Khalfallah, “Combined fault
and side-channel attack on protected implementations
of AES,” in CARDIS, 2011.

[74] E. Ronen, A. Shamir, A. O. Weingarten, and C. Oflynn,
“IoT goes nuclear: Creating a Zigbee chain reaction,” in
IEEE SP, 2018.

[75] S. Ruhault, “SoK: Security models for pseudo-random
number generators,” FSE, 2017.

[76] T. Shrimpton and R. S. Terashima, “Salvaging weak
security bounds for blockcipher-based constructions,” in
ASIACRYPT, 2016.

[77] D. Shumow and N. Ferguson, “On the possibility of a
back door in the NIST SP800-90 dual EC PRNG,” in
CRYPTO, 2007.

[78] R. Spreitzer and T. Plos, “Cache-access pattern attack
on disaligned AES T-Tables,” in COSADE, 2013.

[79] The OpenSSL Project, OpenSSL: The open source
toolkit for SSL/TLS, 2003.

[80] E. Tromer, D. A. Osvik, and A. Shamir, “Efficient
cache attacks on AES, and countermeasures,” Journal
of Cryptology, no. 1, 2010.

[81] J. Van Bulck, F. Piessens, and R. Strackx, “SGX-Step,”
in SysTEX, 2017.

[82] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B.
Kasikci, F. Piessens, M. Silberstein, T. F. Wenisch, Y.
Yarom, and R. Strackx, “Foreshadow: Extracting the
keys to the Intel SGX kingdom with transient out-of-
order execution,” in USENIX Security, 2018.

1255

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 12,2022 at 02:23:34 UTC from IEEE Xplore. Restrictions apply.

[83] S. Van Schaik, A. Milburn, S. Österlund, P. Frigo, G.
Maisuradze, K. Razavi, H. Bos, and C. Giuffrida, “RIDL:
Rogue in-flight data load,” in IEEE SP, 2019.

[84] M. Vanhoef and E. Ronen, “Dragonblood: A security
analysis of WPA3’s SAE handshake.,” in IEEE SP, 2020.

[85] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V.
Bindschaedler, H. Tang, and C. A. Gunter, “Leaky
cauldron on the dark land: Understanding memory side-
channel hazards in SGX,” in CCS, 2017.

[86] O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B.
Kasikci, F. Piessens, M. Silberstein, R. Strackx, T. F.
Wenisch, and Y. Yarom, Foreshadow-NG: Breaking the
virtual memory abstraction with transient out-of-order
execution, 2018.

[87] J. Woodage and D. Shumow, “An analysis of the NIST
SP 800-90A standard.,” in EUROCRYPT, 2019.

[88] Wtdrog, Systemd issue #11810 - can’t suspend again
after suspending one time, 2019.: github.com/systemd/
systemd/issues/11810.

[89] Y. Xiao, M. Li, S. Chen, and Y. Zhang, “Stacco:
Differentially analyzing side-channel traces for detecting
SSL/TLS vulnerabilities in secure enclaves,” in CCS,
2017.

[90] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel
attacks: Deterministic side channels for untrusted oper-
ating systems,” in IEEE SP, 2015.

[91] M. Yan, C. Fletcher, and J. Torrellas, Cache telepathy:
Leveraging shared resource attacks to learn DNN archi-
tectures, arxiv:1808.04761, 2018.

[92] Y. Yarom and N. Benger, Recovering OpenSSL ECDSA
nonces using the Flush+Reload cache side-channel
attack, IACR ePrint archive 2014/140, 2014.

[93] Y. Yarom and K. Falkner, “F L U S H + R E L O A D: A high
resolution, low noise, L3 cache side-channel attack,” in
USENIX Security, 2014.

[94] K. Q. Ye, M. Green, N. Sanguansin, L. Beringer, A.
Petcher, and A. W. Appel, “Verified correctness and
security of mbedTLS HMAC-DRBG,” in CCS, 2017.

[95] S. Yilek, E. Rescorla, H. Shacham, B. Enright, and S.
Savage, “When private keys are public,” in IMC, 2009.

[96] F. Zhang, mbedtls-SGX, 2018.: github.com/bl4ck5un/
mbedtls-SGX.

[97] N. Zhang, K. Sun, D. Shands, W. Lou, and Y. T. Hou,
TruSpy: Cache side-channel information leakage from
the secure world on ARM devices, IACR ePrint archive
2016/980, 2016.

[98] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart,
“Cross-tenant side-channel attacks in PaaS clouds,” in
CCS, 2014.

A P P E N D I X A

C A C H E AT TA C K D E TA I L S

In this section, we present the details of our state recovery

attack. In the synchronous model of Osvik et al. [64], an

attacker observes the plaintext and is able to probe the cache

state immediately before triggering an encryption with an

unknown key. The attacker is also able to probe the cache

state immediately after each encryption. Observing the cache

access patterns caused by the first round of AES during a few

encryption operations is sufficient to recover the key [64].
Attacking the Last Round of AES. Working in the

synchronous model of [10, 58, 64] we target the final round of

AES, with attacker-observed ciphertext, rather than plaintext.
Implementations commonly use a different T-Table for the

final round of encryption, allowing us to measure last round

table accesses independently of earlier round accesses. Let qi
be the ith byte within the T-table, ci be the ith ciphertext byte,

and let ki be the ith byte of the last round key. From the

definition of T-table AES we know that ci = T[qi] ⊕ ki where

T is the final round table. Thus, an attacker who observes ci
and determines qi by monitoring the cache for accesses can

solve this equation for the key byte, yielding ki = ci ⊕ T[qi].
Handling Missing Information. While the attack outlined

above works when the attacker has perfect visibility over qi
and i, on a real system the attacker does not directly observe

qi . Instead, she identifies a contiguous set of bytes that are

fetched into the cache together (a cache line, typically 64 bytes)

and thus loses information about some of the least significant

bits of qi . On our machine, each access corresponded to 16

different possible values for qi , as each final T-Table byte is

stored four times, in a 4-byte integer, 16 of which are in each

cache line. Further, the attacker does not know i, as she does

not know which cache access produced which ciphertext byte.

Thus, in order to obtain a candidate key byte ki , the attacker

must somehow guess the value of qi from the table indexes

accessed in the last round as well as guess the missing 4 bits

from qi . As we expect about 11 distinct indexes to be accessed

in the last round [58], this results in about 11 · 24 = 176
candidate values for each ki , out of 256 possible candidates.

We notice however, that across many independent encryp-

tions of different plaintexts under the same key, the correct

value for every ki , i = 0, . . . , 16 should always appear in the list

of candidates. In contrast, we expect incorrect candidates to be

uniformly distributed. Thus, if an attacker sees a large number

of encryptions, she can combine the information obtained from

them to retrieve the AES key. Let

hit(q, j) =

{
1 if q-th cache line accessed in j-th trace

0 otherwise
.

Following [58], the attacker counts cache hits that could

correspond to each possible key byte value k from 0x00 to

0xFF for each position i and stores the count in a table S:

S [i] [k] =
n∑
j=0

�∑
q=0

m∑
b=0

T [2m ·q+b]⊕ci=k

hit(q, j)

with � the number of cache lines, m the number of bytes per

cache line, and n the number of traces. As analyzed by [10,

58], the i-th byte of the last round key is then the value of k
such that S [i] [k] is maximal.

A. Obtaining Trace Data
We describe how we mount Flush+Reload against

CTR_DRBG. We begin by recalling that the attack of [58] out-

1256

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 12,2022 at 02:23:34 UTC from IEEE Xplore. Restrictions apply.

lined in Section V-B requires the attacker to gather ciphertexts

paired with corresponding traces of the cache state following

the encryption operation that produced that ciphertext.

Matching PRG Output. To recover the AES key, an

attacker must match each ciphertext to a trace taken in the

interval following the encryption that produced it, but before

the subsequent encryption. In the synchronous model of [64]

where the attacker triggers encryption operations directly, this

matching is trivial. However, in our setting, a request for

random bytes initiates a rapid series of encryptions. If the

attacker’s probes take a long time compared to an encryption

operation, the attacker cannot easily interleave probes. This

difficulty is exacerbated by the fact that encryptions vary in

duration due to other system activity, making the naïve strategy

of probing at evenly spaced intervals fail to produce matching

traces and ciphertext pairs.

Tickers. In order to use the synchronous setting analysis

of [64], we align traces and ciphertexts by using what we

term “tickers”. Tickers are frequent cache probes that measure

how long it takes to access cache lines that contain program

instructions. A cache hit on a ticker gives the attacker a

signal she can use to determine whether to probe the cache

lines containing the T-Table used in the last AES encryption

round. In our case, we set two tickers. The first ticker queries

instructions at the start of the encryption code (as loaded into

the process’ address space), and the second queries instructions

at the end of the encryption code. When either ticker is

triggered, we probe the T-Table cache lines, ideally measuring

cache state before and after encryptions.

Handling Drift. While tickers provide some signal, variations

in how the probe process is scheduled with respect to the

victim process introduce imperfections in the signal provided

by the tickers. Therefore, we also use timing heuristics to

match traces to corresponding ciphertexts. More specifically,

we iterate through the traces we collect, and keep a counter

identifying the next ciphertext to be matched to a trace. Then,

for each trace, we either match it to the current ciphertext and

increment the counter or discard it. We base this decision on

the accompanying ticker and timing data.

Our default case is to match the trace and ciphertext only

if the ticker indicating a recent end-of-encryption event was

triggered for that trace. However, to account for false negatives,

the ticker indicating a recent start-of-encryption event is used if

the interval between the last matched trace’s timestamp and the

current trace’s timestamp exceeds a threshold we determined

empirically. Similarly, if neither ticker was triggered, but the

elapsed time is greater than another empirically-determined

threshold, we match the trace and ciphertext.

Finally, using a ticker to determine when to start collecting

traces may cause the attacker miss some traces belonging to

the initial encryptions. We overcome this by running the key

recovery algorithm with each possible set of matchings, for a

small number of potential initial matches.

Overcoming Prefetching. Modern CPUs attempt to learn

a program’s cache access pattern and fetch data into caches

before this data is actually needed. This data prefetching

frustrates cache side-channel attacks against T-Table AES by

reducing the extent to which a recorded cache hit corresponds

to an actual–rather than predicted–access. If an entire AES

T-Table is preemptively fetched into memory, a naïve cache

side-channel attack will not succeed because the attacker will

record cache hits for every memory line.

We mitigated the effect of the prefetcher by accessing cache

lines in an irregular order, using the pointer chasing technique

of Osvik et al. [64]. This reduces the prefetcher’s ability to

predict our cache accesses and prefetch those lines.

Performance Degradation. If the time it takes to probe the

cache state is too long relative to the duration of an encryption,

an attacker will not be able to generate traces that accurately

capture the state of the cache after each encryption. Allan

et al. [1] showed that this difficulty could be mitigated by

continuously flushing cache lines containing victim program

instructions, so that the victim process was significantly slowed

down. Flushing cache lines requires the victim to repeatedly

fetch code from main memory, increasing access times. On our

system, this slowed down the average duration of an encryption

from 2 μsec to 32 μsec, giving us a large 34μsec window

between successive last AES rounds for cache probing.

Validating Key Candidates. In our setting, plaintexts

encrypted within a single call to the CTR_DRBG generate
function are sequential integers, providing a test to determine

the correctness of a recovered key. Given a series of ciphertexts

and a candidate key, we validate the key by decrypting the

PRG output and checking if the plaintexts form a successive

series of integers. The final integer in the sequence is the last

counter value before the state is updated. Given the recovered

key K , counter value V , and a valid guess for addin (if any is

used), the subsequent state and output of CTR_DRBG can be

generated by executing the update subroutine.

A P P E N D I X B

D I F F E R E N T I A L C RY P TA N A LY S I S D E TA I L S

Differential Propagation. In a differential attack we can

only recover state bytes that differ in the two encryptions. Our

attacks thus follows the “differential propagation” in the AES

rounds as shown in Fig. 4. This will allow us to recover one

byte of state of round 0, 4 bytes of the state of round 1, and

the entire states from round 2 and above.

From State to Key and Plaintext Recovery. Assuming we

were able to recover the full values of the states in rounds j
and j + 1, we can now recover the key for round j + 1:

Si, j+1 = Kj+1 ⊕ P(Si, j) and Kj+1 = Si, j+1 ⊕ P(Si, j)

As the AES key schedule for deriving the round keys is

invertible, we can use any 128 bit round keys to recover the

original 128 bit AES key (we need two consecutive round keys

for 256 bit AES keys). From the recovered key and state we

can calculate both the plaintext and ciphertext.

Iterative State Guess Elimination. In the beginning of

step j of our attack we have one or more possible guesses

for the values of the state bytes of round j. For each guess

1257

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 12,2022 at 02:23:34 UTC from IEEE Xplore. Restrictions apply.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

* * * *

*

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

Byte:

Round 0

Round 1

Round 2

Round 3

Fig. 4: Single byte differential propagation in AES state.

Algorithm 4 Find possible guesses for byte 0 of Round 1.

1: function B Y T E 0 R O U N D 1(L0,1,0, Δ1,0, LΔ2,0..3)

2: GuessList1 ← Empty

3: for Nibble ← 0 to 24 − 1 do
4: G0,1,0 = L0,1,0⊕ Nibble

5: Δ2,0..3 = T0[G0,1,0] ⊕ T0[G0,1,0 ⊕ Δ1,0]
6: if 〈Δ2,0..3〉U = LΔ2,0..3 then
7: GuessList1.append(G0,1,0, Δ2,0..3)

8: return GuessList1

we enumerate all possible guesses for state bytes in round

j + 1, and efficiently eliminating guesses that does not satisfy

the above equations for the “differential propagation”. The

remaining guess are used as input for the next step of the

attack. When we have a guess for the state of two full rounds

we can try to recover the plaintext of the traces and verify that

they are indeed a part of an incriminating counter.

Note that using 3 or more traces helps in eliminating wrong

guesses, usually leaving just a single guess after each step.

The Full Attack. As we have seen we can retrieve GuessList0

that contains all possible guess for G0,0,15 and Δ1,0..3 using

Algorithm 3. For each guess in GuessList0 we now try to

recover 4 bytes from round 1 using a similar method. As

each of the 4 bytes affect different 4 bytes in round 2, we

run the same algorithm as in step 1 using different values.

In Algorithm 4 we show how to find the possible guesses

for G0,1,0. A similar function will find the possible guesses

for G0,1,1, G0,1,2 and G0,1,3. As there may be more than one

guess for each byte value, the full guess list GuessList1 is the

set of possible combinations of guesses for each of the bytes.

In the third phase of our attack, we try to generate all of

the possible guesses for the entire state of round 2. Due to

the “Shift Row” transformation of AES, the value of each of

the 4 bytes in round 1 affect the values of distinct 4 bytes

in round 2 (see Fig. 4). The same guessing logic as before

allows us to create the new guess list (see Algorithm 5 for

example). The guess list GuessList2 is created from all the

possible combinations of the guess for each 4 byte group

(this is done separately for each guess in GuessList1). We can

repeat the same process to use GuessList2 to create the guess

list GuessList3 for the state of round 3 (and in the case of

AES 256 continue another round to get GuessList4).

As we have shown, for each guess in GuessList3 (GuessList4

for AES256) we can now recover a guess for the full key state

and the plaintext for each trace. For each such guess, we check

if the resulting plaintexts form an incrementing counter.

Algorithm 5 Find possible guesses for byte 0, 5, 10 and 15

of round 2.

1: function B Y T E 0 - 5 - 1 0 - 1 5 - R O U N D 2(L0,2,(0,5,10,15),
Δ2,(0,5,10,15), LΔ3,0..3)

2: GuessList2 ← Empty

3: IndxList ← [0,5,10,15]

4: for Guess ← 0 to 216 − 1 do
5: Δ3,0..3 = 0

6: for i ← 0 to 3 do
7: Nibble = (Guess >> (i ∗ 4))&0x f
8: G0,2,IndxList[i] = L0,2,IndxList[i]⊕ Nibble

9: Δ3,0..3 ⊕= Ti[G0,2,IndxList[i]]
10: Δ3,0..3 ⊕= Ti[G0,2,IndxList[i] ⊕ Δ2,IndxList[i]]
11: if 〈Δ3,0..3〉U = LΔ3,0..3 then
12: GuessList2.append(G0,2,(0,5,10,15), Δ3,0..3)

13: return GuessList2

A P P E N D I X C

C O N T R O L L E D - C H A N N E L AT TA C K O N S G X

To generate the required traces, an attacker with OS level

privileges (root) monitors cache access through Prime+Probe.

The attack obtains fine-grained temporal resolution through

a controlled-channel [90] attack. A controlled-channel attack

involves disabling the present bit on the enclave’s page tables,

which by necessity are handled by the OS. By marking the

page containing the T-Tables as not-present, the attacker forces

an asynchronous enclave exit upon access to the table, thereby

transferring control to the attacker controlled OS.

Since all of the T-Tables lie in the same page, the attacker

must ‘toggle’ between accesses by performing a controlled-

channel attack on a page access that occurs in between each

access. We use the page containing the topmost frame of the

stack for this, as the mbedTLS implementation must first read

the index into the T-Table from the stack before each access.

Unlike the T-Table addresses, however, the location of the

stack is randomized by the SGX loader. We overcome this by

first using a controlled-channel attack to force an enclave exit

upon entrance to the AES function. We then mark all pages

in the enclave, except for the thread control structure (TCS),

saved state area (SSA), and the pages containing code, as not-

present. We then resume execution within the enclave; since

the first instruction of the function prologue is push_rbp,

control immediately returns to our segmentation fault handler.

Within the handler, we can determine which page caused

the segmentation fault, which in this case will be the page

containing the top of the stack.

In this manner, we learn the location of the stack for use in

our controlled-channel attack. Then, by forcing enclave exits

upon each access to the T-Tables, we use a last-level cache

Prime+Probe attack to measure each T-Table access separately.

To reduce error, we used Intel’s cache allocation technology

to partition a single way of the LLC to both the victim

and attacking process, and used the isolcpus kernel boot

parameter to isolate them on a single physical core.

1258

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 12,2022 at 02:23:34 UTC from IEEE Xplore. Restrictions apply.

