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Abstract

Rowhammer is a hardware vulnerability in DDR memory by
which attackers can perform specific access patterns in their
own memory to flip bits in adjacent, uncontrolled rows with-
out accessing them. Since its discovery by Kim et. al. (ISCA
2014), Rowhammer attacks have emerged as an alarming
threat to numerous security mechanisms.

In this paper, we show that Rowhammer attacks can in fact
be more effective when combined with bank-level parallelism,
a technique in which the attacker hammers multiple memory
banks simultaneously. This allows us to increase the amount
of Rowhammer-induced flips 7-fold and significantly speed up
prior Rowhammer attacks relying on native code execution.

Furthermore, we tackle the task of mounting browser-based
Rowhammer attacks. Here, we develop a self-evicting ver-
sion of multi-bank hammering, allowing us to replace clflush
instructions with cache evictions. We then develop a novel
method for detecting contiguous physical addresses using
memory access timings, thereby obviating the need for trans-
parent huge pages. Finally, by combining both techniques, we
are the first, to our knowledge, to obtain Rowhammer bit flips
on DDR4 memory from the Chrome and Firefox browsers
running on default Linux configurations, without enabling
transparent huge pages.

1 Introduction

Rowhammer [38] is a fault attack that allows adversaries
to modify values across security boundaries by executing
specific access patterns in their own memory (also referred
to as "hammering" memory). This in turn drains capacitors
in physically adjacent memory rows, resulting in bit flips.
Since its initial discovery by Kim et al. [38], researchers from
both academia and industry have used Rowhammer to violate
security guarantees of numerous platforms [3, 8, 9, 14, 21, 41,
43, 49, 51, 53, 56, 58, 60], and have even bypassed dedicated
defenses such as Targeted Row Refresh (TRR) [15] and Error
Correcting Codes (ECC-RAM) [6].

Another change brought about recently is the increased
complexity of the web browser. Rather than being a simple
document viewer, modern web browsers are akin to mini
OSs, complete with their own memory allocators [11, 17, 52],
JavaScript and WebAssembly engines [1, 13, 19], and isola-
tion and sandboxing security mechanisms [2, 5, 10, 16, 18,
54]. Perhaps not surprisingly, Rowhammer attacks have gone
beyond native code execution and have been demonstrated
against browsers as well [8, 14, 21, 56].

However, as browsers and architectures continue to evolve,
threats reported in prior work inevitably become dated.
For example, while bit-flips have been demonstrated on
DDR4 [7, 8, 15, 24, 29, 36], these works typically targeted
older CPU hardware, such as Intel’s 10th generation Comet
Lake architecture. Furthermore, many known Rowhammer na-
tive code exploits were only ever demonstrated on even older
DDR3 systems [14, 22, 41], including nearly all browser-
based Rowhammer attacks [14, 21, 56]. A first indication
regarding the feasibility of browser-based Rowhammer on
DDR4 systems was given in Smash [8], albeit with the non-
default configuration of enabling transparent huge pages in
the Linux kernel. Considering the nature of these older works,
and with the advent of Intel’s 12th generation cores (Alder
Lake), in this paper we ask the following questions:

Is there room for improvement in Rowhammer on DDR4? Are
the current state-of-the-art Rowhammer techniques feasible
on recent Intel platforms? How can such attacks be mounted
both from native code and from the browser? In particular,
can Rowhammer attacks be mounted on modern systems un-
der default settings, without any configuration changes?

1.1 Our Contributions
In this paper, we show that we can indeed enhance Rowham-
mer, both by boosting its efficiency and improving existing
attacks to work on modern systems. To that end, we present
multi-bank hammering: a technique that amplifies Rowham-
mer by exploiting bank-level parallelism of DDR memory.
We show that multi-bank hammering is effective at amplify-



ing Rowhammer attacks on DDR4, causing up to seven-fold
increase in the amount of flips compared to other hammer-
ing techniques. Moreover, using multi-bank hammering we
are able to demonstrate the first Rowhammer bit flips on In-
tel’s 12th generation (Alder Lake) architecture. Finally, we
show that multi-bank hammering can be performed in browser
contexts, demonstrating the first Rowhammer attack in both
Chrome and Firefox under default configurations, without
Transparent Huge Pages (THPs).
Multi-Bank Hammering. The main observation behind
multi-bank Rowhammer is that while memory accesses are
often written sequentially, they are actually performed in par-
allel when accessing different memory banks. Thus, by ac-
cessing many banks simultaneously we are essentially able to
parallelize Rowhammer, improving prior works by obtaining
about a 7-fold increase in the amount of bitflips found within
an hour of hammering in native-code environments.
Avoiding clflush. Going beyond native contexts, we next
consider browser-based Rowhammer attacks. To that aim, we
must avoid any use of the clflush instruction, replacing it with
cache eviction techniques. Here, we introduce a new ham-
mering technique dubbed "SledgeHammer", that leverages
multi-bank hammering to improve the result of [8], traversing
a set of addresses that both hammers and fully self-evicts
without the use of any dummy elements. This in turn allows
us to create a self-evicting Rowhammer attack without using
clflush, which is required for browser-based hammering.
Avoiding Transparent Huge Pages (THPs). The next step
for enabling browser-based Rowhammer attacks is the need
to obtain 2 MB blocks of physically contiguous memory. Not
wanting to assume a non-default configuration of transparent
huge pages being enabled in the kernel, we develop a novel
approach for detecting physically contiguous pages using
memory access timing from within the browser. This allows
us to obtain the first browser-based Rowhammer attack on
DDR4 memory using a fully default configuration, taking 20
seconds on average to obtain the first bit flip.
Improving End-to-End Rowhammer Attacks. As a final
contribution, we show how our techniques can be used to
significantly improve the performance of Rowhammer. First,
in the native setting we demonstrate an opcode flipping at-
tack against the sudo binary, allowing unprivileged code to
obtain root permissions within minutes. We then extend the
RAMBleed [41] attack to DDR4 memory, showing a leakage
rate of 1.369 bits / second. Finally, we tackle browser-based
Rowhammer, obtaining flips up to 169 bits / hour, as well as
demonstrating a 64-bit write primitive on Firefox.
Summary of Contributions. We contribute the following:
• We use bank-level parallelism to construct multi-bank ham-

mering, and show that it can flip bits that were hitherto
unflippable using prior techniques (Section 4).

• We analyze the root cause behind multi-bank hammering
across different Intel architectures (Section 5).

• We enable browser-based Rowhammer attacks on default
Linux configurations by avoiding clflush instructions Sec-
tion 6 and transparent huge pages (Section 7).

• We improve End-to-End Rowhammer attacks (Section 8).

1.2 Vulnerability Disclosure
Following the practice of vulnerability disclosure, we shared
our findings with Intel, Mozilla, and Google.

2 Background

2.1 Rowhammer
While it was long guaranteed that keeping up with a DRAM’s
refresh schedule would ensure the integrity of its data, this
guarantee was broken with the discovery of Rowhammer [38].
In [38], it was shown that repeated row activations (ACTs)
to a row had the unexpected consequence of accelerating the
charge loss of neighboring rows. If the offending row (ag-
gressor row) was activated over a certain threshold before
the neighboring row (victim row) was refreshed, the victim
row would lose enough charge to flip the data in certain bits.
While the underlying cause of Rowhammer has not changed
over the years, newly implemented Rowhammer mitigations,
DRAM production process node, and differences in instruc-
tions available to the user have created differences in how
bitflips can be triggered across generations of DRAM.
DDR3. The first Rowhammer bit flips were found on DDR3
DIMMs by Kim et al. [38]. By writing a certain data pat-
tern in a row and the bitwise inverse data in the neighboring
rows, and then hammering the original row by repeatedly
sending ACT and PRE commands, the authors were able to
observe bitflips in most of the neighboring rows after as few
as 139k activations. After the initial discovery of Rowham-
mer, Seaborn and Flake [56] created a more effective variant
of Rowhammer called double-sided Rowhammer, where two
aggressor rows, one above and one below a victim row, are
hammered to maximize victim row charge leakage.
DDR4. Recognizing the severity of the threat posed by
Rowhammer, vendors responded by deploying hardware mit-
igations in the next generation of DDR memory, DDR4.
Notably, a new command in the DDR4 specification [30]
called Targeted Row Refresh (TRR) was implemented as a
Rowhammer countermeasure. Here, the memory controller
sends out TRR commands whenever it senses the possibility
of Rowhammer, giving the memory additional time to refresh
vulnerable rows to stop it. However, Frigo et al. [15] showed
that TRR was not implemented in consumer processors; in-
stead, the mitigations were implemented in-DRAM, and addi-
tional refreshes for mitigating Rowhammer were being hidden
in scheduled refreshes. To overcome this mitigation, [15] ham-
mered multiple pairs of rows within a single bank per ham-
mering iteration (many-sided Rowhammer). Building upon
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Figure 1: Diagram of Intel i7-7700 processor’s cache and core
structure. Each core has its own L1 and L2 caches. The L3
cache is shared between cores, and is split into slices.

these findings, Blacksmith [29] proposed a more robust fuzzer,
and Halfdouble [39] showed a new hammering method that
utilized aggressor rows 2 rows away from the victim. Note
that because the deployed defense differs by DIMM, the most
effective hammering pattern differs per DIMM, with some
patterns unable to flip any bits.
Browser-based Rowhammer. Rowhammer attacks from
the browser have also been investigated. Gruss et al. [21]
showed Rowhammer attacks are possible from the browser by
utilizing eviction sets to evict cache lines to memory on DDR3
DIMMs. Finally, [8] triggered bitflips on DDR4 memory from
the browser with THPs enabled by the kernel, creating a more
efficient eviction set by traversing across addresses that each
hammer a different row in memory.

2.2 Cache Organization

Caches bridge the gap between the main memory and the core
in computers. While caches are smaller than main memory,
they are significantly faster to access. As memory accesses
often show temporal locality, even with small sizes, caches
are effective at reducing accesses to main memory.
Cache Structure. Caches are organized into multiple levels;
the closer the level is to the core, the smaller the size, and the
lower the access latency. Figure 1 depicts the cache structure
of an Intel quad core processor. Here, each core has its private
L1 and L2 cache, where the L1 cache is divided into the L1i
for instructions and L1d for data. Next, the L3 cache is shared
between cores, and is split into n slices, where typically n is
either equal to or double the number of cores. In the example
depicted by Figure 1, each core lies close to 2 slices. The L3
cache is also known as the last-level cache (LLC).
Cache Slice and Set. Figure 2 represents a more detailed
representation of a cache slice. The cache slices from Figure 1
are filled with cache sets. The unit of data storage in the cache
set is cache lines. Each cache line in the LLC is uniquely
mapped, with the physical address of the cache line being
used to determine which cache set and slice the cache line
belongs to. If multiple accessed cache lines map to the same
set and slice, it creates cache contention, where different cache
lines fight over the space in the cache. If cache contention
occurs, access latency spikes as the core needs to access the
evicted cache line from memory.
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Figure 2: Diagram depicting slices, sets, and set ways. In the
i7-7700, there are 1024 sets per slice and 16 ways in a set.

Set Associativity. To reduce cache contention, cache sets
are designed to have multiple slots or ways that a cache line
can occupy. For example, a 16-way set associative cache can
have a maximum of 16 cache lines placed in the same set. In
this case, we would need to access more than 16 cache lines
to cause cache contention and increase access latency.
Cache Attacks. When attacker and victim applications run
on the same CPU, the attacker can leak information about
the victim’s memory access patterns by observing changes
in the cache. One well-established profiling technique is
Flush+Reload [62]. While it requires the attacker to share
memory with the target, an attacker can detect the victim’s
accesses at cache line granularity by flushing the shared lines
from the cache, and then measuring the reload latency later
in time. Another such technique that does not require shared
memory is Prime+Probe [44], where the attacker can profile
the target at cache set granularity by building a minimal evic-
tion set and measuring the access time to traverse all of its
elements. Overall, both attacks are useful when flushing or
evicting data from the cache.

2.3 DRAM Organization
Memory hierarchy can be organized by differing levels of
independent operation; channel, rank, and bank. Figure 3
shows a simplified representation of DRAM organization. A
channel consists of multiple ranks, and each rank consists of
multiple banks. A DRAM bank is an array of DRAM cells
and each DRAM bank can load and store data independent
of other banks [28, 35]. This independence is crucial when
maximizing memory throughput, and this allows memory ac-
cesses to be parallelized at the bank level. If memory accesses
are concentrated to a single bank, the accesses become seri-
alized, wasting available memory bandwidth. To maximize
memory throughput, modern processors are created with this
parallelism in mind and memory address hash functions are
designed to maximize distribution across available banks.
DRAM Refresh. DRAM cells cannot hold their charge in-

Row

Rank Bank BLSA

Figure 3: Diagram of DRAM organization



definitely, as capacitors continually leak by nature. Therefore,
this charge has to be replenished before the data is lost or
damaged. This is called DRAM refresh, and the time window
that a DRAM cell has to be refreshed within is the tREFW .
As DRAM cannot carry out normal DRAM operations dur-
ing refreshes, DRAM access latency spikes during refreshes.
To reduce the length of the latency spikes, a small selection
of DRAM rows are refreshed every tREFI (refresh interval)
instead of refreshing all rows simultaneously.
DRAM Data Access. Within a DRAM bank’s cell array, in
each cell, data is stored in capacitors as electrical charges, and
the cells on the same row are connected to the same wordline.
When a wordline turns on, the charge within DRAM cells
flows out through the bitline to the bitline sense amplifiers
(BLSA). The amplifiers than send the charge back into the
bank cells, making sure that the data within the cells is not lost.
This process, turning the wordline on and flowing the charge
out to the BLSA, is called row activation and is initiated
by the memory controller via ACT commands. As BLSA is
shared between rows, when another row has to be activated,
the activated row has to be closed and BLSA has to return
to a precharged state. This process is called precharge. The
minimum time between the beginning of activate and the end
of precharge is called tRC (row cycle) and this value dictates
the minimum time between two activates in a single bank.
Finally, despite bank-level parallelism, the specification does
impose a limit between activates of rows within the same rank
across different banks called tRRD (row-to-row delay).

3 Threat Model and Experimental Setup

For the native attacks, we assume the typical threat model for
Rowhammer, where the attacker has unprivileged code exe-
cution on the target machine. For the browser-based attacks
outlined in Section 6, we assume that the attacker can only
run browser-based JavaScript and WebAssembly code under
default configurations. Next, we assume that the machine runs
Ubuntu Linux, with all side-channel countermeasures left in
their default state. With popular client-side Linux distribu-
tions (e.g. Ubuntu, Fedora, Mint, etc) having their transparent
huge page setting set to madvise, we assume that the attacker
does not have access to THP for browser-based attacks.
Experimental Setup. Table 1 summarizes all the experi-
mental setups used in this paper, including motherboard and
CPU models and microcode versions. We use two main ex-
perimental setups. For DDR3 hammering, we use a Lenovo
ThinkCentre M83 Dekstop equipped with an Intel i7-4770
(Haswell) CPU that is running Ubuntu 20.04 LTS. The ma-
chine is equipped with a single AXIOM 4 GB DIMM with
16 banks. As DDR3 DIMMs contain no countermeasures for
Rowhammer attacks, we use traditional double-sided ham-
mering for this machine.

Next, for DDR4 hammering, we use a Lenovo ThinkCen-
tre M910t desktop running Ubuntu 22.04 LTS. Here, the ma-

CPU Microcode BIOS Version Motherboard
i7-4700 0x28 1.185 10AKS03000
i7-6700 0xf0 1.2.8 OptiPlex 7040
i7-7700 0xf4 M1AKT24A 10MMCTO1WW

i7-8700K 0xf4 1302 ROG STRIX Z390-E
i9-9900K 0xf0 2012 TUF Z390-PLUS
i7-10700K 0xf4 1202 MPG Z490 GAMING
i9-11900K 0x50 0404 PRIME Z590-A
i7-12700K 0x2e Rev 1.xx ROG STRIX Z690-A

Table 1: Experimental Setups used in this paper.

chine is equipped with an Intel i7-7700 (Kaby Lake) CPU and
two 16-bank Samsung M378A1K43BB1-CPB 8 GB DIMMs,
resulting in a 32-bank dual channel configuration. As our
DIMMs contain on-DIMM Targeted Row Refresh (TRR),
we use a 10-sided hammering pattern from [15]. For 4, un-
less stated otherwise, we use a single DIMM across all other
DDR4 machines listed in Table 1 to eliminate the noise from
using different DIMMs.

4 Multi-bank Hammering

In this section, we introduce multi-bank hammering. We first
explain the core principle of hammering multiple banks in
parallel and how it can be used to access aggressor rows more
efficiently. We then present multi-banking experiments on
DDR3 and DDR4, finding that Rowhammer on DDR3 does
not benefit from multi-bank hammering (due to clflush se-
rializing instructions), while DDR4 systems show a signifi-
cant increase in flips, presumably due to presence of the non-
serializing clflushopt command. Lastly, we investigate the
root cause behind the increase in flippyness in Section 5.

4.1 Parallelizing Aggressor Accesses

The main idea is to use bank-level parallelism to linearly
scale up the number of bitflips per hammering iteration by
hammering multiple banks at the same time. Figure 4 shows
an unrolled example of this hammering code. After accessing
Row 0 in Bank A, we access Row 0 in Bank B, then Row
0 in Bank C. While this code is written serially, when the
requests reach the memory they become parallelized as they
access different banks. This bank-level parallelism allows us
to simultaneously activate many rows on the targeted DIMM,
thereby amplifying the Rowhammer effect.

Figure 5 illustrates how the memory processes the loads.
As the time between ACTs in a single bank is limited by tRC
(46.75ns), in the single-bank hammering case, row 1 of bank
A cannot activate until tRC after activating row 0. However, by
interleaving activations across banks, we are able to hammer
a new row in a different bank every tRRD (3.7 ns or 5.3 ns)
which is significantly shorter then tRC.



1 w h i l e ( i t e r < h a m m e r i n g _ i t e r a t i o n s )
2 {
3 *( v o l a t i l e c h a r * )BK_A_ROW_0;
4 *( v o l a t i l e c h a r * )BK_B_ROW_0;
5 *( v o l a t i l e c h a r * )BK_C_ROW_0;
6 . . .
7 *( v o l a t i l e c h a r * )BK_A_ROW_1;
8 *( v o l a t i l e c h a r * )BK_B_ROW_1;
9 *( v o l a t i l e c h a r * )BK_C_ROW_1;

10 . . .
11 i t e r ++;
12 }

Figure 4: Unrolled multi-bank hammering code.
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Figure 5: Single-bank hammering (Top) versus multi-bank
hammering (Bottom). We use the time between row activates
to a single bank to maximize the number of hammered rows.

4.2 Multibanking On DDR3 with clflush

We first experimented with Multi-bank hammering on a
DDR3 machine. As DDR3 machines do not contain any
known Rowhammer mitigations, hammering two rows within
a single bank is sufficient to induce bitflips. In this experi-
ment, we hammered two rows in each bank, with the number
of banks being hammered increasing from 1 to 6. For each
bank, we performed double-sided hammering, meaning we
activate 2n rows in total when simultaneously accessing n
banks. When flushing the row out of the cache and into the
memory we utilized the clflush instruction. Each bank config-
uration is hammered 1000 different times for 0 to 1 flips (1s
in aggressor rows and 0s in victim rows) and 1000 times for
1 to 0 flips (0s in aggressor rows and 1s in victim rows), i.e.
2000 times total.
Hammering Results. Figure 6 shows the results from
the multibanking experiment. As can be seen, multibanking
results in fewer bit flips on DDR3 machines, with the total
number of bitflips found after 1000 iterations steadily going
down as the number of banks increases.
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Figure 6: Hammering on DDR3 machine while increasing the
number of banks, with 2 aggressors per bank (double-sided).

Root Cause Analysis. Aiming to identify the root cause
behind the failure of our approach, we measure the DIMM’s
flippyness, namely the average number of bit flips found per
bank per hammering iteration. We achieve this by dividing the
total number of flips found by the number of banks hammered
and then dividing further by number of hammering iterations.
Finally, we also estimated the time duration between two
consecutive activation commands (which we call ACT-to-
ACT time), by measuring the duration of each multi-bank
hammering iteration, dividing it by the number of banks and
the number of expected ACTs to the bank. See Figure 7.
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Figure 7: Results from Figure 6 divided by the number of
banks and hammering iterations (flippyness) and the average
time between two ACTS per bank (ACT-to-ACT).

From Figure 7, we can observe that the time it took for a
hammering iteration significantly increased as the number of
banks increased. As Cojocar et al. [7] showed, the speed of
accessing the aggressor rows in DRAM (i.e, Act-to-Act time)
has a significant impact on how flippy the attack is to the
DIMM. Thus, we hypothesize the increase in ACT-to-ACT
latency is the culprit behind the decrease in flippyness.
Identifying the Bottleneck. Investigating the root cause be-
hind the increase behind the ACT-to-ACT timing, we discov-
ered that the clflush instruction cannot be executed in parallel
on our Intel i7-4770 machine used for DDR3 hammering [26].
Since Rowhammer attacks require flushing the accessed row
from the CPU’s cache in order to trigger row buffer activa-
tions, we conjecture that the clflush instructions have the effect
of serializing our memory accesses, inhibiting the effects of
bank-level parallelism for Rowhammer. However, in addition
to DDR4 memory, new generations of Intel machines [26]
introduced the clflushopt instruction, which allows for paral-
lel cache flushing. With this instruction, we can proceed to
evaluate our approach on Intel CPUs with DDR4 memory.

4.3 Multibanking On DDR4 with clflushopt

In addition to the availability of clflushopt instructions, an-
other difference in hammering DDR4 memory is in-DRAM
Rowhammer mitigations. Frigo et al. [15] showed that the
manufacturers have hidden extra refreshes to vulnerable rows
within regular refresh timing, a mitigation technique com-
monly known as Targeted Row Refresh (TRR). However,
by hammering multiple rows in a bank in specific pattern,
[15] showed how to overcome the TRR mechanism, resulting
in Rowhammer-induced bitflips. Next, as the TRR mecha-
nism differs per DIMM, each DIMM has a specific number of



aggressor rows that the DIMM is most susceptible to. The op-
timal number of rows ranged from 3-sided (Rowhammer with
1 pair of rows and an auxiliary row), 10-sided, to 19-sided.
Experimental Setup. We tested our technique on DDR4
memory by augmenting the TRRespass [15] with multi-bank
hammering capabilities. More specifically, we used [15] to
locate a successful hammering pattern against a single DDR4
DIMM, establishing its susceptibility to 10-sided hammering.
We then used this pattern to perform multi-bank hammering,
varying the number of banks from 1 to 6. Next, we repeated
each experiment 1000 times, where each iteration used a dif-
ferent set of aggressor rows for 10-sided hammering. Finally,
as 10-sided hammering requires 2MB of continuous memory
to guarantee placement of a victim row between two aggres-
sors, we utilized Linux’s hugepage mechanism and allocated
memory using the madvise system call.
Experimental Results. Figure 8 presents the results of our
experiment. However, unlike our DDR3 results (Figure 6), for
DDR4 we see an increase in the number of flips as the number
of banks increases to four, followed by a decrease in flips for
five and six banks. Next, even assuming full bank parallelism,
we expect to see about 2x increase in the number of flips
when we move from hammering one bank to two banks. With
Figure 8 showing an increase of 5.8-fold in the number of bit
flips, we thus deduce that multi-bank hammering is able to
flip bits otherwise unflippable using single bank approaches.

0
10000
20000
30000

1 2 3 4 5 6

N
um

 F
lip

s

Number of Banks

0 to 1 1 to 0

Figure 8: Results from increasing the number of banks with a
fixed number of aggressor rows per bank.

Root Cause Analysis. To understand the underlying cause
of the increase in flips, as with the results from DDR3, we
normalize the amount of flips found by dividing it by the
number of banks and the number of hammering iterations.
Next, similarly to Figure 5, we also measure and plot the
ACT-to-ACT time, which is the time between two consecu-
tive memory activation commands. Inspecting Figure 9, we
see that the DIMM’s flippyness triples when the number of
hammered banks goes from one to two and steadily declines
afterward. With ACT-to-ACT time remaining nearly identical
between single bank and two bank hammering, we investigate
the reason for the large increase in flippyness in Section 5. Fi-
nally, as the effectiveness of Rowhammer is highly dependent
on memory access speeds [7], we attribute the reduction in
flippyness observed while hammering three or more banks in
parallel to the increase in ACT-to-ACT times.
Comparing Multibanking to Other Rowhammer Attacks.
We have also measured the effectiveness of multi-bank ham-
mering compared to other Rowhammer attacks against DDR4
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Figure 9: Flippyness of 1 to 0 flips from Figure 8 (bar) and
the average time between two ACTs in a single bank (line).

memory. More specifically, we benchmark our attack against
TRRespass [15], Blacksmith [29], and Halfdouble [39], run-
ning each attack for an hour while counting the amount of
Rowhammer-induced bit flips. As Blacksmith is configured to
run on an Intel i7-8700K CPU with a single DIMM by default,
all testing was done on an i7-8700K machine with a single
DIMM taken from the experiment in Figure 8. Next, as Black-
smith takes a long time to synchronize with DRAM refreshes,
we test it with standard deviation threshold of 3.0 (default)
as well as with a threshold of 10.0 (to reduce the effects of
synchronization overhead). Finally, for TRRespass and Multi-
bank hammering, we fix the hammering pattern to 10-sided
hammering using 4 banks for multi-bank hammering.

Table 2 summarizes our findings, clearly showing how
multi-bank hammering yields a 7-fold improvement over TR-
Respass. Blacksmith only found 161 flips with a standard
deviation limit of 3 (default) and 347 flips with a standard de-
viation limit of 10. Finally, our configuration was not able to
find any bitflip within the allotted hour with HalfDouble [39],
presumably indicating that our DIMMs are not vulnerable to
HalfDouble’s hammering approach.

Multi-
bank

TRRes-
pass

Black-
smith-3

Black-
smith-10

Half-
double

Bitflips 194646 27370 161 347 0
Table 2: Observed flips in 1 hour of hammering. Blacksmith-
3 and Blacksmith-10 represents Blacksmith configured with
activation count standard deviation limit of 3 and 10.

5 Analyzing Multi-Bank Hammering on
DDR4

In this section, we seek to further understand the effects of
multi-banking, analyzing the microarchitectural root cause
behind the results of Section 4.3 and exploring the efficacy of
multi-banking on newer architectures. In particular, we argue
that multi-banking affects the buffering of memory commands
from the CPU, providing less opportunities for instruction re-
ordering. This in turn increases the hammering efficiency of
our pattern, resulting in more Rowhammer-induced bit flips.

5.1 Root Cause Analysis
To determine the exact cause of the increased flippyness, we
extend the experiment in Figure 9. Our goal is to first deter-



mine whether the source of the flip-boost comes from on-
DIMM side-effects, or if the boost is partially due to potential
off-DIMM effects (e.g. a faster rate of requests from the CPU).
To this end, we add another DIMM to our machine and divide
"bank selection" into 3 different cases. That is, we perform
multibank hammering with the following 3 configurations:
(1) all banks selected solely from DIMM1, (2) all banks are
selected solely from DIMM2, and (3) evenly dividing the
banks between the two separate DIMMs (selecting the last
bank at random for an odd number of banks).

Figure 10 presents a summary of our findings. As can be
seen, performing multi-bank hammering results in a notice-
able increase in the DIMMs’ flippyness across all three cases,
including the split DIMM case. In particular, we notice a be-
havior similar to that presented in Figure 9, namely an increase
in flippyness when simultaneously hammering two banks. We
observe that this occurs even when the two hammered banks
are split across two physical DIMMs. Next, since the DDR4
spec does not provide any means for inter-DIMM communi-
cation, we deduce that the root cause behind the increase in
flips actually lies outside of the DIMMs.

Exploring Intel Mitigations. Having determined that the
source of increased flippyness is likely stemming from out-
side the DIMMS, we proceed by evaluating two documented
memory controller level mitigations present on DDR4 mem-
ory: Intel’s implementation of Pseudo Targeted Row Refresh
(pTRR) for compliant DIMMs, and doubling the DIMM’s re-
fresh rate otherwise as a fallback [33]. We rule out the effect
of both mitigations in Appendix A.

The Mechanics of (Multi-Bank) Rowhammer. With the
two possible explanations ruled out, we focused on how else
multi-banking affects the hammering pattern. Here, we note
that multi-banking adds a significant number of additional
addresses, compared to single-bank hammering. More specif-
ically, we observe that when performing Rowhammer (even
a 10-sided one for our case), the CPU accesses only a small
number of memory addresses (10 in our case) in a round-
robin fashion. We conjecture that such an access pattern gets
reordered by the memory subsystem, potentially rearrang-
ing some of the pattern’s instructions, thereby reducing its
hammering effectiveness. Thus, by performing multi-bank
hammering we add more commands to the set of buffered
instructions, effectively separating commands that access the
same address from each other, thus reducing opportunities
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Figure 10: Relative flippyness compared to single-bank ham-
mering in each case when the hammered banks are selected
from DIMM1, DIMM2, and split between the two.

for memory subsystem reordering. While normally the added
reads will degrade the pattern’s hammering speed and thus
its efficacy at causing flips at the DIMM level, we recall that
access to different banks is performed in parallel by memory
hardware. As such, our multi-banking hammering pattern still
has an ACT-to-ACT latency similar to single-bank hammer-
ing while precluding memory subsystem reordering, resulting
in an increased Rowhammer efficacy.
Multibank Dummy Hammering. To test our hypothesis,
we created a new hammering pattern which we dub Multi-
bank Dummy Hammering, see Figure 11 for an example with
2 banks. Here, only bank A is being hammered by activat-
ing multiple rows (10 in our case), while accessing different
addresses in a single row (dummies) in bank B. As rows
in different banks operate independently, such a pattern has
the effect of inducing hammering in bank A due to repeated
row activations while avoiding hammering effects at bank
B, as row 0 is kept open. Moreover, this pattern can be gen-
eralized to include dummy elements from additional banks,
allowing us to test whether the increase in DIMM flippyness
stems from us preventing memory subsystem reordering by
temporally separating between read instructions to the same
address.

Bk A
Row 

0

Bk B
Row 

0

: Row ACT (Hammer)

…

: Read (Dummy)

Bk A
Row 

1

Bk B
Row 

0

Bk A
Row 

2

Figure 11: Multibank Dummy Hammering pattern. Instead
of sending additional ACT commands to rows in other banks,
we read data from the same row repeatedly.

Experiment Results. Figure 12 shows the results from
the multibank dummy hammering experiment with the flip-
pyness results from Figure 9 added on. Here we can see that
Multibank Dummy Hammering and Multibank Hammering
show similar results, both indicating a jump in the DIMM’s
flippyness when the number of banks increases from one to
two and a steady decline after reaching the peak. This result
indicates that the added dummy accesses to different banks
do influence the overall effectiveness of our hammering pat-
tern, confirming our hypothesis that the additional flippyness
stems from temporally separating between read instructions
targeting the same address.
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Figure 12: Results from Multibank Dummy hammering and
Multibank hammering on i7-7700.
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Figure 13: Flippyness of Multibank Hammering and Multibank Dummy Hammering across Processor generations.
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Figure 14: Number of flips from Multibank Hammering and Multibank Dummy Hammering across Processor generations.

5.2 Hammering Across Architectures

Next, we evaluated the effectiveness of multi-bank hammering
and Multibank Dummy Hammering across various genera-
tions of Intel machines. Here, we repeated the multi-bank
hammering experiment from Figure 12 on 6th till 12th gen-
eration processors. Finally, to remove the effect of process
variation in DRAM DIMMs, we used the same DDR4 DRAM
DIMM in all experiments.
Flippyness. Figure 13 shows the flippyness of each hammer-
ing pattern. As can be seen, multi-bank hammering and Multi-
bank Dummy Hammering are both able to produce more bit
flips on all the machines we have tested. When the hammering
patterns are most effective (i.e., 6th to 10th generations), we
observe the biggest increase in flippyness when the number of
banks is increased from one to two. For multi-bank hammer-
ing, we see an average of 7.32× increase in flippyness with
i7-6700 showing the biggest jump of 13.1x. For Multibank
Dummy, we see an average of 4.97× increase in flippyness
with i7-6700 also showing the biggest jump of 12.4×.
Rocket Lake Hammering. While both multi-bank and
dummy hammering patterns generally exhibit similar trends,
observing Figure 13 we note a difference in behavior on
the i9-11900K (Rocket Lake) processors. Here, Multibank
Dummy Hammering hits the lowest flippyness earlier at 2
banks while multi-bank hammering is lowest at 3 banks. Fur-
thermore, Multibank Dummy Hammering’s flippyness dra-
matically climbs to 3.9 at 5 banks and then falls off, while
flippyness for multi-bank hammering keeps climbing. We thus
leave the task of investigating the behavior of the memory
subsystem on Rocket Lake machines to future works.
Total Number of Flips. Moving away from reporting the
machine’s flippyness (i.e., total number of flips found divided
by the number of banks hammered and then dividing further
by number of hammering iterations) in Figure 14 we count
the total number of flips generated by each hammering pat-

tern during 1000 iterations, without any division. Here, we
can clearly see the effects of Rowhammer parallelization via
multibank hammering. Compared to single-bank hammering,
multi-bank allows us to simultaneously generate multiple flips
across different DIMM banks in parallel. While we observed
the largest amount of flips (32K) on our i9-9900K CPU, when
compared against single-bank hammering, our approach was
most effective on the i7-6700. Here, by hammering four banks
we obtained about 14K bitflips, representing a 39.3x improve-
ment over single bank hammering on this platform. Finally,
averaging across all platforms, multi-bank hammering was
about 24x more effective at generating flips compared to sin-
gle bank hammering.

5.3 Hammering 12th Generation Machines
Having established the effectiveness of our techniques on
6th to 11th generation Intel architectures, we now discuss
Rowhammer attacks on 12th generation (Alder Lake) CPUs.
Obtaining Bit Flips. Indeed, we tested multi-bank and Multi-
bank Dummy hammering on a 12-th generation i7-12700K
(Alder Lake) CPU. When running the benchmarks, the Linux
kernel automatically used the P-cores as these were inten-
sive workloads. Figure 15 depicts the total number of flips
generated by each hammering pattern during 1000 hammer-
ing iterations. While single bank hammering was not able
to produce any bit flips, using two-bank dummy hammering
did yield 30 flips per 1000 hammering attempts. Here, we
conjecture that the dummies where instrumental in bypass-
ing re-ordering done by Alder Lake’s memory subsystem,
despite serving no hammering purpose at the DIMM level.
Finally, running the most effective pattern on our i7-12700K
processor, we were able to generate flips at a rate of 8k bit-
s/hour, totaling 24k flips after 21.5k iterations across 3 hours.
In Section 8, we show these bitflips can be used to gain kernel
privileges as well as mount RAMBleed attacks.
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Figure 15: The total number of generated flips with Multibank
and Multibank Dummy hammering on a 17-12700K CPU.

Bank Address on Alder Lake Architectures. Unlike most
modern Intel architectures, which use physical address bits 6
till 20 for bank addresses, the addressing function on our Alder
Lake machine uses bits 9 through 33 of the physical addresses.
This complicates launching Rowhammer attacks even when
using huge pages, as huge pages are 2 MB aligned and only
allow us to control bits lower than bit 21. Therefore, on Alder
Lake CPUs we cannot fully determine the corresponding bank
given an address within the huge page, preventing us from
finding addresses that map to the same bank across huge
pages, thus precluding n-sided Rowhammer.
Hugepage Coloring Algorithm To overcome this prob-
lem, we adapt the huge page cache slice coloring algorithm
from [8] into a huge page bank address coloring algorithm.
Figure 16 illustrates the underlying idea behind huge page
coloring. Our algorithm leverages the fact that we do not
need the exact hash of the inaccessible bits outside of a huge
page to generate addresses that map to the same bank across
huge pages, but only the relative difference of the hash be-
tween huge pages (or the "color" of a huge page), to generate
addresses to the same bank.
Assigning Colors To determine the color of a huge page,
we begin by first selecting a single huge page, and generating
ranges of addresses such that each range maps to a differ-
ent bank. Since we do not know exactly which bank each
address range maps to, we assign each huge page a color.
Next, we seek to learn whether the addresses of separate huge
pages map to the same color. To this end, we alternate access
between addresses of our colored hugepage and unknown
addresses of the uncolored hugepage, observing whether the
accesses cause bank conflicts. When a conflict is found, this
allows us to map the unknown hugepage to the same color or
a new one. For the next unknown hugepage, we repeat the pro-
cess, now checking it against both of our colored hugepages,
determine whether it maps to a known color or a new one.

Through this process, we can generate addresses that map
to the same bank across different huge pages by using lower
bits’ hash with the color of the higher bits’ hash. This tech-
nique is used in the end-to-end Alderlake exploit in Section 8.

6 Multi-bank Hammering without clflush

Armed with the capability to flip bits via multi-bank ham-
mering, we seek to explore how it can be utilized to update

Bank

63 21 20 6 5 0

High bits Low bits Line Offset

Bits within huge pageBits outside huge page

f ff ‘ “

Figure 16: Bank address hash function in a huge page. The
higher bits outside of the huge page are hashed and then xor-
ed with the hash of bits within the huge page to generate the
bank address.

existing exploits. In particular, we observe that our technique
can be used to improve attacks in the browser, which require
the use of self-evicting Rowhammer patterns due to the lack of
a clflush instruction. Thus, in this section we first explain the
challenge of performing Rowhammer without clflush and the
limitations of prior self-evicting approaches. We then discuss
how multi-bank hammering can be used to execute a self-
evicting Rowhammer pattern on DDR4 more efficient than
prior work [8], introducing our new self-evicting, multi-bank
technique: Sledgehammer. Lastly, we present experimental
results, demonstrating the efficiency boost of our technique.

6.1 Limitations without clflush

DDR3 Rowhammer without clflush. Most Rowhammer
attacks rely on clflush instructions in order to flush the aggres-
sor rows from the CPU’s caches, triggering the Rowhammer
effect by rapidly accessing the machine’s main memory. How-
ever, when the attacker code is executed inside a browser
environment where clflush is not available, the attacker must
resort to other means to evict the aggressor rows to the ma-
chine’s main memory. On DDR3 machines, [21] found and
used eviction sets entirely from JavaScript and WebAssembly
code running within a browser sandbox, thereby mounting
browser-based Rowhammer attacks. However, utilizing this
technique directly on systems with DDR4 memory is not
plausible, as multi-sided hammering would require travers-
ing through multiple eviction sets and thus would not access
memory fast enough to cause Rowhammer.
DDR4 Rowhammer without clflush. One approach to
overcome this limitation was proposed by de Ridder et al. [8].
Here, SMASH [8], or Synchronized Many-sided Rowhammer,
creates efficient eviction sets through a self-evicting Rowham-
mer pattern. This access pattern relies on identifying groups
of potential aggressor rows that map to the same cache set /
slice and accessing them to evict other aggressor rows that
were in the cache. However, as the most effective number of
aggressor rows is typically DIMM specific, it is typically not
possible to maintain hammering efficiency while also increas-
ing the number of aggressor rows to the amount needed for
overcoming the cache’s associativity.

SMASH fixed this problem by introducing addresses in
the hammering pattern that would cause cache hits, but will



nonetheless cause the cache’s pLRU eviction policy to evict
other aggressor addresses. Therefore, every access to an ag-
gressor would cause evictions to another aggressor as the
cache’s associativity is effectively reduced.

Figure 17 (left) illustrates this hammering pattern. The hits
(Blue) are more frequently accessed and remain in the cache
set. This leaves only 3 cache ways left for other cache lines
to occupy. As a result, the aggressors (Orange) are able to
evict each other with only 5 aggressors, much less than the
16 ways of the cache set.
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Figure 17: Illustration of SMASH (left) and Sledgehammer’s
(right) memory access pattern. The grey array represents ac-
cess and the black dotted arrow represents eviction. 13 hits
are introduced in SMASH, while all cache ways are full with
aggressors with Sledgehammer.

Refresh Synchronization. A unique aspect of SMASH
is the need to synchronize the hammering patterns with the
memory’s refresh commands. More specifically, as the cache
hits in SMASH’s hammering pattern do not result in mem-
ory accesses, the pattern contains gaps in time during which
the memory controller is idle. In these gaps, the memory
controller might attempt to refresh DRAM ahead of time to
optimize performance, potentially refreshing victim rows and
precluding Rowhammer-induced bit flips. Thus, to prevent
this behavior, SMASH adds nops so that the time required
to run the hammering pattern matches tREFI (the refresh
window) and “synchronizes” with normal DRAM refreshes.

6.2 Sledgehammer
While SMASH is capable of flipping bits without clflush, its
hammering speed is not optimal due to overhead from cache
hits and synchronization. However, by leveraging multi-bank
hammering we can avoid SMASH’s use of cache hits, instead
adding more aggressors through increasing the number of
hammered banks. This allows us to fill up an entire cache set
purely with aggressors while maintaining the optimal n-sided
hammering per bank. We name this multi-bank self-evicting
hammering pattern as “Sledgehammer”.

This hammering pattern is illustrated in Figure 17 (right).
Here, the orange aggressors occupy the entire cache set, in
contrast to Figure 17 (left) where it is shared with the blue hits.
As a result, every access results in a cache eviction, which
maximizes throughput and keeps the memory controller from
idling. Furthermore, because the accesses are in parallel in
memory as they are accessing different banks, the added ag-
gressors cause minimal overhead to hammering speed, while

eliminating the need for refresh synchronization.
Testing for Eviction. We note that Sledgehammer relies on
being able to access all its aggressors directly from DRAM,
which become cached while evicting prior aggressors. Thus,
finding an access pattern that always self-evicts is crucial.

To that aim, we tested the probability that an accessed
aggressor would be in the main memory while incrementing
the number of banks and the number of rows. Specifically,
we first accessed aggressors in the hammering array for 10
iterations as a startup phase. Then, we stopped and measured
the number of cycles it took to access the next aggressor in the
array. As memory access takes longer than cache access, we
can determine where the aggressor was before it was accessed
by looking at the access latency. The measurement was taken
100 times per bank and row pair.
Experimental Results. Figure 18 shows the probability that
an aggressor was accessed from DRAM in the experiment.
The location of perfect self-evictions on this heatmap shows
that we can either increase the number or aggressor rows per
bank, which increases traversal time and reduces Rowham-
mer efficiency, or exploit bank-level parallelism and access
additional aggressors in different banks.
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Figure 18: Self eviction probability as function of number of
aggressor rows and number of banks.

6.3 Native Sledgehammer Benchmark
Figure 19 shows the results of our experiment, in which we
varied the number of banks from 3 to 8 while hammering
at 10 aggressors per bank. As expected, when only using
3 banks we are unable to achieve any bit flips, due to the
failure of self-eviction. Next, while we were able to obtain
some bit flips using 4 or 5 banks, these Sledgehammer con-
figurations flipped significantly less bits when compared to
their clflush-based counterparts (presumably due to unreli-
able self eviction). The amount of flips per attack peaks at
6 banks, achieving 78.5% of the flips compared to clflush.
Subsequently, it decreases after 6 banks and drops even faster
compared to clflush.
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7 Obtaining Contiguous Memory Without
Huge Pages

With Sledgehammer, we possess an updated technique for
self-evicting DDR4 Rowhammer, allowing us to flip bits in
browser environments where clflush is not available. However,
in order to obtain an end-to-end attack using default system
configurations, we must avoid SMASH’s [8] use of transpar-
ent huge pages (THPs), which are not available by default in
the browser. Thus, in this section we present a technique for
obtaining large contiguous pages without the use of THPs, in
which we use a cache side-channel to obtain a large 10 MB
block of memory that is broken down into 2 MB blocks. We
additionally discuss the challenge of occasional false positive
side-channel readings, and how to overcome these. Finally, we
benchmark our primitive, showing that contiguous memory
can be obtained within seconds without using THPs.
The Need for Contiguous Pages. Obtaining physically con-
tiguous memory is required for Rowhammer on DDR4 mem-
ory, as it gives access to the three neighboring rows: namely
two aggressors and a victim row between them. For Rowham-
mer attacks using native code, attackers typically solve this
issue by using the madvise system call, which returns an
aligned physically contiguous 2 MB memory block. How-
ever, as madvise is not available in browser contexts, prior
work [8] manually enabled transparent huge pages, which
are enabled by default only on Linux distributions meant for
server machines [8, Appendix C].
Our Approach. Not wanting to deviate from the default
configuration for user-facing systems, we obtain physically
contiguous memory without transparent huge pages by lever-
aging cache slicing and set functions via a contention-based
side channel. Numerous prior works have demonstrated var-
ious techniques for obtaining contiguous blocks of memory
without hugepages [14, 27, 39, 41, 47, 48, 55, 59, 60].

We follow a similar approach to [14, 27, 39, 41, 47, 48, 59]
in that we first drain the buddy allocator to force allocation
of large, contiguous blocks, followed by using a timing side-
channel to verify the contiguity of blocks larger than the buddy
allocator’s limit. The key difference is that these prior work
use DIMM-level bank conflicts as the basis for their side-
channel. Our approach, however, instead measures timing
spikes resulting from cache contentions. This in turn allows

us to remove the requirements of clflush and a high-resolution
timer, allowing us to find contiguous memory in browser
environments.
Allocator Exhaustion. As in [14, 27, 39, 41, 47, 48, 59],
we begin by observing that the buddy allocator does allocate
physically contiguous memory that is larger than or equal to
2 MB when smaller-sized page frames are exhausted. There-
fore, by allocating a large chunk of memory from within the
browser, we are able to exhaust lower levels of buddy allocator
blocks and force it to allocate a large block (i.e., more than or
equal to 2 MB) of physically contiguous memory. While the
buddy allocator [20] only stores up to 4MB size page frames,
when requesting larger amounts of memory, the allocator of-
ten serves blocks of physical memory that are contiguous
over a range much larger than 4MB. In our testing, we were
often able to find cases where there was physically contigu-
ous memory as large as a few hundred MB. Here, we show
how this large contiguous block of memory can be detected
and then leveraged to find 2 MB memory blocks scattered
throughout the allocated memory.
10 MB Block Side-channel. In our target processor, i7-7700,
the 8 MB LLC is divided into 8 different 1 MB slices (one
per each virtual core) and 1024 sets per slice. As Figure 20
illustrates, the slicing function on this CPU is a hash of certain
bits in bits 6 to 63 while the set is the linear bits 6 to 15. By
analyzing the cache’s slice and set functions, we obtained that
for any given cache set and slice, there are 4 cache lines per a
physically contiguous 2 MB block that map to the given cache
location. Thus, physically contiguous 10 MB blocks must
contain 20 addresses, which all map to the same cache set and
slice. With the CPU’s LLC being only 16-way associative,
these 20 addresses create a self-evicting set, which causes a
latency spike when traversed iteratively.
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Figure 20: LLC slice and set function of i7-7700. The slice
function ( f ) is a hash of certain bits from bits 6 to 63 while
the set number is the linear bits 6 to 15.

Finding the Initial 10 MB Block. We now leverage our 20-
element self eviction set in order to determine if a region of
virtual memory is backed by a physically contiguous 10 MB
block. To that aim, we begin by allocating a large amount
of virtual memory (about 1 GB). This has the effect of ex-
hausting all small size allocator pages, forcing the allocator to
subsequently allocate a large block of physically contiguous
memory. Next, to find the offset of the physically contigu-
ous 10 MB block from the start of the allocated memory, we
take an approach similar to the huge page coloring algorithm
of [8], extending it to operate without transparent huge pages.



More specifically, we slide through the allocated memory,
treating each memory location as a potential starting point.
We then calculate the 20-element self eviction set correspond-
ing to the current starting point, and measure the set’s traversal
time. If the current starting point is not backed by a physically
contiguous 10 MB block, the traversal is fast, as the addresses
map to different cache sets. However, in case we have cor-
rectly located a contiguous block, the traversal is slow, as
the addresses of our 20-element self eviction set all map to
the same cache set and slice, thereby causing cache conflicts.
Upon seeing the timing spike, we can double-check that the
address space is backed by a 10 MB block by testing other
offsets that map to the same cache set.
Finding 2 MB Blocks. Once we have the 10 MB block, we
can now utilize it to detect a 2 MB block within the allocated
memory. As there are 4 cache lines that map to the the same
set in a 2 MB block, we need to create a set of 16 addresses
to test if the 4 cache lines map to the same cache set. By
utilizing the 10 MB block we have in hand, we can generate
the 16 addresses. However, as shown in Figure 21, the slicing
function can be broken into the xor of 2 hash values; the hash
value of the higher bits (bit 21 and higher) and the hash value
of the lower bits (bit 20 and lower). Within a 2 MB block,
we can only control the lower hash value. Therefore, while
we can generate offsets that map to the same slice/set in a
2 MB block, we do not know which exact slice out of the 8
slices they map to. To overcome this problem, with the 10 MB
block, instead of generating a single set of 16 addresses that
map the same set, we generate 8 different sets of 16 addresses
that map to different slices. Then, we again slide through the
allocated memory, this time testing 4 potential offsets from
the base address that map to the same cache set against all 8
slices. If we have a spike in latency, then that address space is
backed by a 2 MB block.
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Figure 21: Cache slice hash function of a 2 MB Block. The
original slicing function ( f ) can be broken into the xor of the
hash values of the high bits ( f ′) and the low bits ( f ′′).

Handling False Positives. While we assumed that the con-
dition checked by the timing side channel described above is
sufficient for a 10 MB memory block to be physically contigu-
ous, this is in fact not the case. More specifically, the criterion
checked by our detection algorithm is not comprehensive,
missing corner cases. This in turn results in our 10 MB block
searching algorithm generating ‘false positive’ blocks, which
create a timing spike on our timing channel despite not being
physically contiguous. However, these false positives do not
interfere with our end goal of obtaining 2MB blocks. Since

our technique exhausts the small size pages in the allocator,
a ‘false-positive’ non-contiguous 10 MB block is backed by
three 4 MB blocks, as shown in Figure 22. While these 3
blocks are not contiguous in physical memory, the outputs of
the cache slicing function on their addresses have the same
structure as if they were in fact 10 MB contiguous memory. As
such, we are able to use these 10 MB blocks in our 2 MB block
detection procedure, despite them being non-contiguous.
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Figure 22: Hash value ( f ′ val) of 10 MB contiguous memory
and three 4 MB contiguous memory chunks.

2 MB Block Detection and Rowhammer Benchmarks. We
tested our method for detecting 2 MB blocks in Chrome, im-
plementing our approach in WebAssembly and leaving trans-
parent huge pages (THP) in their default madvise state. To
expedite the search, we searched down from the end of the
allocated memory space as memory allocated later is more
likely to be from higher levels of the buddy allocator. We
measured the time it took to find the 10 MB aligned memory
as well as the time to find a hundred 2MB blocks. Table 3
summarizes our findings, where each measurement was taken
10 times. As can be seen, it takes about 30 seconds on average
to find physically contiguous a 2 MB block, with the maxi-
mum search time being about 5 minutes. After the search for
2 MB blocks, we were able to find the first bit flip on average
of 20.1 s using Sledgehammer.

Average Max Min

Init 10 MB Block 2.32 ms 12.1 ms 0.08 ms
100 × 2 MB Blocks 35.4 s 297.6 s 4.47 s
Time to 1st Bitflip 20.1 s 56.43 s 4.70 s

Table 3: Time taken searching for physically contiguous mem-
ory with THP set to madvise and the time to first bit flip.

8 Evaluation

To show the effectiveness of Sledgehammer, we demonstrate
the attack in two different scenarios: one where the attacker
is able to run unprivileged software on a machine vulnerable
to Rowhammer, and one where the machine’s user visits a
Rowhammer exploit page through their web browser. For the
native attacks, we target previously discovered attacks: op-
code flipping the sudo binary [22] and Rambleed [41]. For
the browser, we benchmark Sledgehammer against the best
browser-based DDR4 hammering patterns, and replicate the



attacks of [8, 14] on Firefox, but with THPs being unavailable
to browser-based hammering (7). For the native attacks we
observe speedups up to 879.4x compared to prior work, while
also increasing the amount of bit flips in browser environ-
ments by 35.7x (Firefox) to 169x (Chrome).

8.1 Opcode Flipping
Gruss et al. [22] showed how to strategically flip bits with
Rowhammer in the sudo binary’s page cache to gain root
privileges without any passwords. The attack templates the
memory to find bitflips at the vulnerable offset, places the
sudo binary on a flippy bit in memory through a technique
named “memory waylaying”, and flips the vulnerable bit to
gain root privileges. For an end-to-end privilege escalation
attack, Gruss et al. [22] reported 95.5 hours for a double-sided
hammering attack on a DDR3 memory. More specifically,
the stealthy variant of Gruss et al. [22] spent 26.2 hours on
templating, with the remaining 69.4 hours spent on waylaying
the binary on the vulnerable bitflip.
Memory Massaging. The majority of the execution time
was used during the waylaying phase, which places the ham-
mered binary into the machine’s memory in a random frame
and subsequently checks for hammerable bits in the binary’s
location. As such, landing the binary takes multiple attempts
and often requires multiple templating phases until the binary
lands on the correct offset.

More recently, Frame Feng Shui [41] deterministically
placed the target data on the desired page by exploiting
Linux’s page frame cache. When pages are deallocated, they
are added to the page frame cache, and upon later allocation
requests, pages are allocated in a first-in-last-out manner. [41]
exploits this by deallocating the page containing the flippy bit
and then deallocating the exact number of dummy pages such
that the target page lands on a flippy bit upon allocation. For
attacking the sudo binary however, Frame Feng Shui alone is
insufficient, as sudo likely already resides in the machine’s
physical memory and thus needs to be evicted from the page
frame cache before it can land on a hammerable bit position.
Page Frame Cache Eviction. To solve this problem,
we begin by recalling a technique from Gruss et al. [23]
that achieves page frame cache eviction in the case that
the targeted page is not mapped by any process other
than the attacker’s. More specifically, it marks the page
cache memory ranges as MADV_DONTNEED using the
posix_fadvise system call, signaling the OS to evict the
page cache. Rather than implementing the eviction code our-
selves, we opted to use vmtouch, a readily available tool for
monitoring binary page frames in memory [25]. Crucially,
vmtouch’s -e argument implements [23]’s page eviction tech-
nique, calling posix_fadvise to mark a specified binary as
MADV_DONTNEED and evict it from the page cache. The
availability of this command simplifies the page cache evic-
tion as we skip the memory allocations used in [22] for mas-

saging data pages, making page cache eviction instantaneous
for code pages. Finally, we use the Frame Feng Shui from
[41] in order to make the evicted page land on a hammerable
bit position, allowing for opcode flipping in the sudo binary.
Working with Transparent Huge Pages (THP). Another
caveat to Frame Feng Shui is that it is not compatible with
THP. This is since THPs are handled differently in the alloca-
tor and whenever a THP is deallocated, it is not stored in the
page frame cache. Next, as THPs are used during our mem-
ory profiling phase, we cannot simply unmap the page that
contains the flippy bit and subsequently land the target binary
on it. We overcome this problem by setting MADV_PAGEOUT
with madvise syscall on one of the 4KB pages that consti-
tute the huge page. This breaks down our 2 MB huge page
into 512 regular 4K pages, allowing us to use the 4K page
containing the flippy bit for Frame Feng Shui. Next, after the
madvise syscall, we proceed as normal and unmap the page
that contains the flippy bit with additional pages. We then
open the target binary, which brings it back to memory and
lands it on the flippy page. In our testing, we were able to land
the target binary 100% of the time and under a microsecond
using MADV_PAGEOUT, vmtouch, and Frame Feng Shui.
End-to-end Overview. To launch the attack we begin by
allocating THPs with madvise and search for a bit flip at a
vulnerable offset. After finding a suitable bit, we break the
THP into smaller pages by using MADV_PAGEOUT and we
evict the sudo binary by vmtouch. Then, we deallocate the
page with the flippy bit and promptly open the sudo binary
to land it on the flippy page. With sudo in place, we hammer
the aggressors and flip the vulnerable bit, giving us access to
root privileges without any passwords.
Experimental Setup. We implemented the end-to-end op-
code flipping attack with multi-bank hammering and mea-
sured the total execution time for the exploit. In our sudoer.so
library, we were able to find 80 vulnerable bits that, when
flipped, would allow root access without entering a password.
We repeated the experiment 10 times, hammering 4 banks and
10 aggressors per bank as this pattern was empirically shown
to generate the most amount of bitflips per iteration. Table 4
shows our results compared to prior work.

Memory
Templating (speedup)

Victim
Placement (speedup)

TRRespass [15] 54m (8.29x) - (-)
Blacksmith [29] 11.4m (1.7x) - (-)
SMASH [8] 14.5m (2.23x) - (-)
Half-Double [39] 22.3 m (3.42x) 19m ((1.05×109)x)
Another Flip [22] 26.1 h (240.4x) 69.4 h ((2.31×1011)x)
Our Work 390.7s (-) 1.08µs (-)

Table 4: Average time for Rowhammer exploit.

Benchmarking Memory Templating. As can be seen
from Table 4, we were able to find a target bit after 1333
hammering iterations, yielding a templating time of 390.7



seconds, representing a 240x improvement over [22]. Next,
[15] and [29] reported the amount of time required when
using their techniques to find a bit-flip that could be used for
a sudo exploit as 54 minutes and 11.4 minutes on average,
respectively, meaning our work demonstrates an 8.29x and
1.7x respective speedup. Finally, we also compare with the
memory templating phased of [8, 39], which do not run sudo
exploits, but do report the time required to find the exploitable
flips for their respective exploits.
Benchmarking Victim Placement. Additionally, our work’s
binary placement only takes 1.08 µs on average compared
to the 69.4 hours of [22]. Since the binary placement phase
does not fail, we are able to launch the attack with 1 bit flip
compared to the 91 bit filps needed in [22]. The efficient
victim placement represents a significant (several orders of
magnitude) speedup over the victim placement stages of [39]
and [41] as well. The remaining listed works did not report
the exact time required to place their target victims as needed
for an exploit.
End-to-End Performance. Using our i7-6700 platform, we
were able to obtain an average end-to-end exploit time of 391
seconds, being dominated by the memory templating phase.
The number of hammering iterations and templating time
showed wide variance, ranging from 13.4 seconds to 17.3
minutes. However, in 5 out of 10 attempts we were able to
gain root access in under 5 minutes, representing an average
879.4× speedup compared to the last prior work to report
an end-to-end opcode flipping attack [22]. For an end-to-end
opcode flipping attack on i7-12700K, it took an average of
48.5 hours over 5 iterations, with a maximum time of 166.4
hours and a minimum of 1 hour.

8.2 RAMBleed Attacks
RAMBleed [41] showed that Rowhammer bit flips can be
used as a read primitive rather than a write primitive. Leverag-
ing the fact that the probability of a bit flip is directly depen-
dent on the values of bits geometrically above and below it,
RAMBleed was able to recover data from DDR3 memory by
observing Rowhammer success probabilities. In this section,
we now extend the work of [41] to DDR4 machines.
Accounting for Row Preference. While [41] did not im-
plement any profiling phase on DDR3 memory, on DDR4
memory, profiling was required to improve accuracy. As [32]
has shown, not all values of the aggressor rows affect a bit
flip. That is, some victim bits flip regardless of the value in
the aggressors above and below, while other victim bits are
only affected by one or both aggressor bits. In our testing,
15.6% of bitflips occurred regardless of the data in both rows,
4.2% flipped when either row had inverse data written, and
8% were not reproducible. Therefore, only 71% of bitflips
were usable for RAMBleed. Of that 71%, in 68% of the cases
the bitflips had a “preferred row” meaning the flip would
only occur depending on the data within only one of the two

aggressor rows surrounding the victim.
Experimental Setup. We implemented RAMBleed to read
data from a 4KB page loaded into the machine’s physical
memory. For the hammering pattern, we chose a 4-bank
10-sided pattern to maximize bitflip throughput. We start
RAMBleed by templating the machine’s memory, looking
for Rowhammer-vulnerable bit flips. Upon finding a bit flip,
we profile the flip to check for row preference, ascertaining
that its flipping probability is indeed data-dependent. If the
flip is usable, we add the hammering pattern, the flipped ad-
dress, and row preference to a data set. We then continue this
process until we have 100 usable flips. Finally, with our 100
data-dependent flips in hand, we proceed to mount the RAM-
Bleed attack, recording leakage throughput and accuracy.
Results. On our i7-6700 platform, we obtained 100 data-
dependent bit flips in 709 seconds, including memory tem-
plating and bit profiling. We were then able to read data at
a rate of 1.369 bits/s with 82% accuracy. The entire attack
took 781.9 s to complete. On i7-12700K, we obtained 100
data-dependent bit flips in 65 minutes, reading data at a rate
of 1.56 bits/s with 80% accruacy.

8.3 Browser Benchmark
Rowhammer Benchmark. To measure the effectiveness of
browser-based Sledgehammer, we benchmarked the number
of bitflips found within 1 hour against Smash [8]. For a fair
comparison, we implemented Sledgehammer in Javascript.
We ran the benchmarks in both Chrome 111 and Firefox 113
(both latest at the time of writing). In native code, the mfence
instruction is used to order memory accesses between ham-
mering iterations. However as this instruction is not available
in Javascript, we added dummy XOR instructions after each
eviction set traversal: 10 XORs for Firefox and 20 XORs for
Chrome. We record the number of unique flips found and the
average ACT-to-ACT latency when a bit flip occurred.
Results. Figure 23 summarizes our results. As expected,
Sledgehammer outperformed SMASH [8] in all browsers by
orders of magnitude. It found 169 unique flips compared to
1 in Chrome and 107 unique flips compared to 3 in Firefox.
Observing the ACT-to-ACT latency, we can see why Sledge-
hammer is more effective at flipping bits. Here, we can see
that Sledgehammer is 1.6× faster on average compared to
SMASH. This is expected as SMASH has additional over-
heads such as NOPs for refresh synchronization and cache
hits for self-eviction, which are avoided by Sledgehammer.
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Figure 23: Number of flips per hour and average ACT-to-ACT.



8.4 Browser Exploit

We now weaponize Sledgehammer to craft a 64-bit write
primitive in Firefox 113, effectively breaking its JavaScript
sandbox on default OS and browser configurations, thereby
demonstrating the first end-to-end Rowhammer exploit from
the browser on DDR4 memory under practical assumptions
(i.e. THP is disabled).
Compromising Type Integrity with Bit Flips. We adapt
the exploit chain of [8, 14], utilizing Rowhammer in a type-
flipping attack. More specifically, after templating exploitable
flips in memory, we place a JavaScript Array element at a
vulnerable location. Here, we leverage the fact that Arrays
in JavaScript must support heterogeneity. Thus, Firefox im-
plements Array elements as a fixed-width datatype, wherein
certain bits indicate if the corresponding value represents a
number or a pointer [12]. Consequently, depending on the di-
rection of the bit flip, an attacker can fool Firefox’s JavaScript
engine to treat attacker-supplied numbers as pointers or to
leak pointers to the attacker, violating type integrity.

In [8, 14], JavaScript Arrays cannot be templated on di-
rectly, as their type check slows down memory accesses exces-
sively for single-bank hammering. This necessitates allocator
massaging steps to reuse the same physical memory from
template to exploit. Conversely, Sledgehammer allows us to
eliminate massaging and template directly on Arrays.
Constructing the Write Primitive. The flippable Array
element points to an inlined ArrayBuffer. Thus, hammering
this location not only exposes the pointer to JavaScript, but
also the virtual address of the ArrayBuffer data. The end goal
is to craft a fake non-inlined ‘ArrayBuffer’ with an attacker-
controlled 64-bit pointer to its ‘data’ to allow arbitrary reads
and writes. However, we need a read primitive to recover the
ArrayBuffer’s metadata first. To that aim, we fill the Array-
Buffer data to represent a ‘string’ reading from the exposed
pointer, and write the data’s starting address as a number
pointing to another flippable Array element. Here, a bit flip
in the other direction causes Firefox to treat that element as a
pointer. Finally, after reading the metadata, we overwrite the
ArrayBuffer with it and our read/write target.
Results. First, we test Sledgehammer’s ability to detect
contiguous 10 MB regions in the browser for 30 trials. We
observe 7 successful trials, wherein the median time for detec-
tion is 25 seconds. Subsequently, we measure the end-to-end
time until finding a pair of exploitable bit flips and construct-
ing the 64-bit write primitive from JavaScript on 10 successful
runs. Here, we observe a minimum of 159 seconds, maximum
of 1034 seconds, and median of 804 seconds.

9 Countermeasures and Conclusions

In this paper, we presented Sledgehammer, a new Rowham-
mer technique that exploits bank-level parallelism to amplify

the effectiveness of Rowhammer attacks. Beyond improv-
ing the speed at which attackers can generate bit flips, this
new technique also yielded bitflips on Intel’s 12 generation
Alder Lake CPU, when prior techniques failed to produce
even a single flip. To further demonstrate the implications
of Sledgehammer, we showed how our improved hammering
techniques dramatically improved the effectiveness of both
the opcode-flipping [22] and Rambleed [41] attacks. More-
over, we demonstrated the first end-to-end Rowhammer attack
from the browser while running under default configurations
(i.e. with THP disabled).
Future Work. In this paper we consider multiple generations
of Intel machines, using DDR3 and DDR4 memory as well as
linear cache slicing functions. We leave the task of perform-
ing Rowhammer attacks on DDR5 memory, as well as CPUs
made by other vendors, to future work. Likewise, extending
our techniques for finding contiguous physical memory to
support additional slicing functions would facilitate browser-
based Rowhammer attacks on newer processor generations
with non-linear cache slicing. Finally, investigating Rowham-
mer resilience of additional browsers, such as Chrome and
and Safari, is an important open problem with potentially
wide-reaching security implications.
Countermeasures. The fundamental way to remove vul-
nerabilities from Rowhammer would be to implement mit-
igations in hardware [34, 37, 38, 42, 50, 57, 61]. However,
as [8, 15, 29, 39] have shown, with enough time, new ham-
mering patterns can be discovered and these mitigations can
be circumvented years after deployment. When this happens,
several years of manufactured memory suddenly become vul-
nerable to Rowhammer and attacks leveraging Rowhammer.
As such, we must design the software layers as if the potential
for bitflips always exists. Isolating data in memory to pre-
vent another process from flipping bits in the current process
[4, 40, 45] are good examples of bit flip tolerant software
layers. Another way to harden the software layer would be
to stop the deterministic allocation of pages. As [41] and we
have shown, deterministically allocated pages are incredibly
useful when attackers want to place a target page onto flippy
memory. Randomizing page allocations would make launch-
ing a Rowhammer attack substantially more difficult even if
parts of the memory are flippy, thereby hardening the system
against Rowhammer.
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A Ruling out pTRR and Double Refresh Rate

pTRR. As outlined in [15, 31], Intel’s pTRR implementa-
tion monitors the memory ACT commands via the memory
controller. When a row exceeds the DIMM’s Maximum Ac-
tivation Count (MAC), the memory controller will attempt
to mitigate Rowhammer by automatically issuing a refresh
command to potential victim rows. However, as [15] showed,
pTRR is only enabled in server processors and only when the
MAC value is not set to unlimited. As our system is config-
ured with a client processor and as our DIMMs report their
MAC value as unlimited, we assume that pTRR is not enabled
in our system.
Measuring Refresh Rate. To rule out double refresh rate
as a possible cause of the flippyness jump, we checked for it
by measuring hammering latency per iteration. We repeatedly
hammered 2 rows per bank, measuring the latency per ham-
mering iteration for 5000 iterations. Figure 24 shows example
code that we used to measure the access latency while ham-
mering 4 rows in 2 banks. To minimize jitter, we unrolled the
hammering code and directly accessed and flushed target row
addresses. To remove expensive IO operations, we chose to
store rdtscp() output into an array and later calculate the ham-
mering latency. Fencing instruction is not used in this case as
rdtscp waits until loads are globally visible [46]. Finally, we
disabled Turbo-boost and set C-state to C1 at a base clock of
3.6 GHz for this experiment.

1 i n t i t e r = 0 ;
2 i n t c l k _ a r r [ 5 0 0 0 ] ;
3 w h i l e ( i t e r < 5000)
4 {
5 *( v o l a t i l e c h a r * )BK_0_ROW_0 ;
6 *( v o l a t i l e c h a r * )BK_1_ROW_0 ;
7 *( v o l a t i l e c h a r * )BK_0_ROW_1 ;
8 *( v o l a t i l e c h a r * )BK_1_ROW_1 ;
9 c l f l u s h o p t (BK_0_ROW_0) ;

10 c l f l u s h o p t (BK_1_ROW_0) ;
11 c l f l u s h o p t (BK_0_ROW_1) ;
12 c l f l u s h o p t (BK_1_ROW_1) ;
13 c l k _ a r r [ i t e r ] = r d t s c p ( ) ;
14 i t e r ++;
15 }
16

Figure 24: Hammering latency measurement code.

Figure 25 shows our results. We remove initialization noise
by plotting the data after 2500 iterations. In the graph, we
observe repeated spikes in hammering latency. These spikes
are about 1800 clock cycles high and spaced about 2800 clock
cycles apart. Subtracting the average hammering latency of
500 cycles, this equates to 360 ns in height and 7.8 µs in
time between spikes, which is around the 350 ns tRFC (the
time that a single refresh operation takes) and 7.8 µs tREFI
(the time between refreshes) in DDR4 specifications. This
result shows that double refresh mode is not enabled and the
memory is operating at its normal timings. In particular, our
observations align with [15], which also reported that double
refresh mode was not enabled for DIMMs with unlimited
MAC.
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Figure 25: Measured hammering latency while hammering 2
rows in 1 bank. y-axis marks the hammering latency in clock
cycles and the x-axis marks the hammering iteration. DRAM
refreshes are visible and spaced 2800 clock cycles or about
7.8 µs from each other.
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