Comp 590-184:
Hardware Security and Side-Channels

Slides adapted from Roger
Dannenberg and Greg Ganger

Today’s Class

« Computer Architecture Background
— General background on caches
— How caches can be used for side-channels
— What cache side-channels can accomplish

Moore’s Law: The number of transistors on microchips doubles every two years [SNSSLE
Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. in Data
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.
Transistor count

50,000,000,000 GC2IRY QPAMD Epyc Rome

72- core Xeon Pm Centriq 2400 “@y € AWS Graviton2
“\@32-core AMD Epyc

1BM 213 Storage Conroller Apple A12X Bionic
10,000,000,000 TR G \\o tisiicon ki 99056,
pple AL3 (Phone 11 Pro)

5,000,000,000 Xﬁiﬁg‘;?:;”pi?% . @AMD Ryzen 7 3700X
12-Core POWERS 88 SHisiicon Kiin 710
8-core Xeon Nehalem-EXs, € i7 Broa we

AT SrapdiSgon B>

Dual-cors u‘w‘%ﬁﬁé%"&uwo 8 ° oDuaPcore TCPY s Core 7 Broadwell-U

Qa0 Shre BP0 T3 Core 1 Skt K
1,000,000,000 Pentium D.Presler \ _powers - K3] ° de core + GPU Core i7 Haswell

| Apple A7 (dual-core ARM64 ‘mobile SoC’)
500,000,000 LIV RS °CO{<e1 7Qua
Harium 2 Madison MO ’COVC 2 Dué‘\u/%l Faie
tium D Smithfielck ore 2.Duo Con
Harium 2 Mk ey & K ggeu Core 3 Do Woltdale 3M
Pentium 4 Prescott-2M . @Core 2 Duo Allendale

100,000,000 Pentium 4 Cedar Mill
AMD Kso °Pemum 4 Prescott
50,000,000 Pentium 4 Northwood
' ’ Pentium 4 Willamette ¢ . @ :@Brton Qatom
Pentium I Tualatin
Pentium Il Mobile Dixon, @i CortbeAs
AMD K7€ @Pentium Iil Coppermine
AMD Ké-Ill
Homee PG o @R
5,000,000 penum rog,_p i Do
Pentiumgy, AM ><s
SA-110
1,000,000 Intel 8048{)° °R4000
TI Expl 2.
500,000 \Eelrera bt 8
Intel 80384g, Intel o ARM 3
Motorola 680204y LLS ¢
e wrL
100,000 ., S MuliTitan °
Motorola ARM
5806 S
50,000 4 Qintel 80186 i
Intel 8086€p @ Intel 8088 9, ?AAFM 2 A;& 6

| Motorgla 65CH16
10,000 51000 Ziog 280 S8 %8 NCAGis
5,000 RCA1802 Qnieigogs &

Intel 80080 $1i1 8050
/ Technology
Motoigla 558

Intel 4004

1,000
R A A A0 @ X ® D ko DD I P S
SR S S O MO M USROG A S S

Data source: Wikipedia (wikipedia.org/wiki/Transistor_count) Year in which the microchip was first introduced

OurWorldinData.org - Research and data to make progress against the world’s largest problems. Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.

Problem: Processor-Memory Bottleneck

Core 2 Duo:

Processor performance Bandwidth
every 18 months Bus bandwidth Latency
evolved much slower 10q cycles
CPU
Reg
Numbers Everyone Should Know (Jeff Dean, Google))
* L1 cache reference: 0.5ns
* Branch mis-predict: 5ns
Can process at IeaSt * L2 cache reference: 7ns
512 Bytes/cycle * Mutex lock/unlock: 25ns
* Main memory reference 100 ns
* Compress 1K Bytes with Zippy 3000 ns
* Send 2K Bytes over 1 GBPS network 20000 ns
* Read 1 MB sequentially from memory 250000 ns
* Round trip within data center 500000 ns
* Disk seek 1000000 ns
* Read 1MB sequentially from disk 2000000 ns
* Send one packet from CA to Europe 15000000 ns

Solution: Caches

Memory Hierarchy

J3||ews
191564

CPU
Registers

/ L1 Cache \
/ L2 Cache \

L3 Cache

/ \
/ Main Memory \
/

Disk Storage

JabueT
J9MO|S

Solution: Caches

Cache

Definition: Computer memory with short access time
used for the storage of frequently or recently used
instructions or data

General Cache Mechanics

Smaller, faster, more expensive
Cache 9 3 memory caches a subset of
the blocks

Data is copied in block-sized
transfer units

Larger, slower, cheaper memory
Memory 0 1 2 3 viewed as partitioned into “blocks”
4 5 6 7
9 10 11
12 13 14 15
| | | | | || |

General Cache Concepts: Hit

Request: 14 Data in block b is needed
Block b is in cache:
Cache 8 9 T E bitl

Memory 0 1 2 3
4 5 6 7
9 10 11
12 13 14 15
| | || | | || |

Cache Miss

Cache

Memory

Request: 12

12 9 14 3
Request: 12

1 2 3

4 5 6 7
9 10 11

12 13 14 15

|| | ||

Data in block b is needed

Block b is not in cache:
Miss!

Block b is fetched from
memory

Block b is stored in cache
*Placement policy:
determines where b goes
*Replacement policy:
determines which block
gets evicted (victim)

Cache Performance Metrics

. Miss Rate

* Fraction of memory references not found in cache (misses / accesses)
e =1-hitrate

* Typical numbers (in percentages):
. 3-10% for L1
can be quite small (e.g., < 1%) for L2, depending on size, etc.

- HitTime
* Time to deliver a line in the cache to the processor
includes time to determine whether the line is in the cache
* Typical numbers:
1-2 clock cycle for L1
« 5-20 clock cycles for L2

. Miss Penalty

* Additional time required because of a miss
« typically 50-200 cycles for main memory (Trend: increasing!)

Lets think about those numbers

Huge difference between a hit and a miss

* Could be 100x, if just L1 and main memory

How much better is 99% hit rate vs 97% hit rate?

cache hit time of 1 cycle miss penalty of 100 cycles

* Average access time:
* 97% hits: 1*(0.97) cycle + 0.03 * 100 cycles = 3.97 cycles
* 99% hits: 1*(0.99) cycle + 0.01 * 100 cycles = 1.99 cycles

This is why “miss rate” is used instead of “hit rate”

Types of Cache Misses

Cold (compulsory) miss

* Occurs on first access to a block

Conflict miss

* Most hardware caches limit blocks to a small subset (sometimes a
singleton) of the available cache slots

e.g., block i must be placed in slot (i mod 4)

* Conflict misses occur when the cache is large enough, but
multiple data objects all map to the same slot

e.g., referencing blocks 0, 8, 0, 8, ... would miss every time

Capacity miss

* Occurs when the set of active cache blocks (working set) is larger

Why Caches Work

Locality: Programs tend to use data and instructions with
addresses near or equal to those they have used recently

Temporal locality:

Recently referenced items are likely
to be referenced again in the near future

Spatial locality:

Iltems with nearby addresses tend
to be referenced close together in time

\/

block

C

[TTT

| block

Example: Locality?

sum = 0;

for (i = 0; i < n; i++)
sum += a[i];

return sum;

Data:

* Temporal: sumreferenced in each iteration

* Spatial: array a[] accessed in stride-1 pattern
Instructions:

* Temporal: cycle through loop repeatedly

* Spatial: reference instructions in sequence

Being able to assess the locality of code is a crucial skill
for a programmer

Locality Example

int sum _array cols(int a[M] [N])

{

int i, j, sum = 0O;

for (j = 0; j < N; j++)
for (i = 0; 1 < M; i++)
sum += a[i] [J];
return sum;

int sum _array rows (int a[M] [N])

{

int i, j, sum = 0O;

for (i = 0; 1 < M; i++)
for (j = 0; j < N; j++)
sum += a[i][]]-
return sum;

Memory Hierarchies

Some fundamental and enduring properties of hardware and
software systems:

* Faster storage technologies almost always cost more per byte and
have lower capacity

* The gaps between memory technology speeds are widening
+ True of registers <> DRAM, DRAM < disk, etc.
* Well-written programs tend to exhibit good locality

These properties complement each other beautifully

They suggest an approach for organizing memory and
storage systems known as a memory hierarchy

Memory Hierarchy

J3||ews
191564

CPU
Registers

/ L1 Cache \
/ L2 Cache \

L3 Cache

/ \
/ Main Memory \
/

Disk Storage

J3MO|S

—
QU
=

(@]
D
=

Hierarchy on a modern CPU

CPU CPU CPU CPU CPU CPU

Examples of Caching in the Hierarchy

Where is it

Cache Type What is Cached? Latency (cycles) Managed By
Cached?

Registers 8-byte words CPU core 0 | Compiler

TLB Address On-Chip TLB 0 | Hardware
translations

L1 cache 64-bytes block On-Chip L1 1 | Hardware

L2 cache 64-bytes block On-Chip L2 10 | Hardware

Virtual Memory 4-KB page Main memory 100 | Hardware+0OS

Page cache Parts of files Main memory 100 | OS

Network buffer Parts of files Local disk 10,000,000 | File system client

cache

Browser cache Web pages Local disk 10,000,000 | Web browser

CDN Web pages Remote server disks 1,000,000,000 | cpNn

General Cache Organization (S, A, B)

A = 22 lines per set
A

.
| | |

Cache size:
S x A x B data bytes

valid bit N~————
B = 2> bytes per cache block (the data)

Cache Read

A = 22 lines per set
A

S = 25 sets <

* Locate set

* Check if any line in set
has matching tag

* Yes + line valid: hit

* Locate data starting
at offset

Address of word:

EBIts s bits | b bits |

tag set block
index offset

\'

tag_|

1]2]- - «|B1}

|
valid bit |

N— —

B = 2b bytes per cache block (the data)

data begins at this offset

Example: Direct Mapped Cache (A =1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

r _ 2|3 4|5 6|7 Address of int:
v tag | t bits | 0..01 | 100 |
v tag of1if2f3]afsfe] find set
S=ZSsets<
v taLI 0 12|3 4|5 6|7

v tag JEEEBBEE

Example: Direct Mapped Cache (A=1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

Address of int:

eBies o..01 [100 |

valid? + match: assume yes = hit

of1fosfafsde])

block offset

Example: Direct Mapped Cache (A =1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

Address of int:

eBies o..01 [100 |

valid? + match: assume yes = hit

ofifofsfafelels

block offset

int (4 Bytes) is here

No match: old line is evicted and replaced

E = 2: Two lines per set
Assume: cache block size 8 bytes

E-way Set Associative Cache (Here: A=1)

Address of short int:

[Ebits o0..01 | 100]|

—1 find set

[] PEEEEH|] o) e NBEEEEE
[=] AEEEEE |0} = NEEEEE
myEE I RAEEEEEE|| (o= FEEEEEE
E = ow n " m mEom " " o= om
[] AEEEEE |0} = NEEEEE

A-way Set Associative Cache (Here: A= 2)

A = 2: Two lines per set

Assume: cache block size 8 bytes Address of short int:

{REBISIN 0..01 [100]

compare both

valid? + | match: yes = hit
off2fsfafstelz 0 Hv] Ltee J Lodefzgsfagsielz)| —

block offset

A-way Set Associative Cache (Here: A = 2)

A =2:Two lines perset
Assume: cache block size 8 bytes Address of short int:

{REBISIN 0..01 [100]

match both

valid? + | match: yes = hit

of1f2fsfaf-qc]7]
| -

v Lteg J [ofafaqsfafsiel7)| —

block offset

short int (2 Bytes) is here

No match:
*One line in set is selected for eviction and replacement

Replacement Policy

* Optimally: replace block that is accessed furthest in the future

* Locality argument

* Hasn’t been used recently, less likely to be used in future
* LRU: replace line that was least recently used

What about writes?

Multiple copies of data exist:

e L1, L2, Main Memory, Disk

What to do on a write-hit?

* Write-through (write immediately to memory)

* Write-back (defer write to memory until replacement of line)
Need a dirty bit (line different from memory or not)

What to do on a write-miss?

* Write-allocate (load into cache, update line in cache)
Good if more writes to the location follow

* No-write-allocate (writes immediately to memory)

	Comp 590-184:�Hardware Security and Side-Channels��
	Today’s Class
	Slide Number 3
	Problem: Processor-Memory Bottleneck
	Memory Hierarchy
	Cache
	General Cache Mechanics
	General Cache Concepts: Hit
	Cache Miss
	Cache Performance Metrics
	Lets think about those numbers
	Types of Cache Misses
	Why Caches Work
	Example: Locality?
	Locality Example
	Memory Hierarchies
	Memory Hierarchy
	Hierarchy on a modern CPU
	Examples of Caching in the Hierarchy
	General Cache Organization (S, A, B)
	Cache Read
	Example: Direct Mapped Cache (A = 1)
	Example: Direct Mapped Cache (A = 1)
	Example: Direct Mapped Cache (A = 1)
	E-way Set Associative Cache (Here: A = 1)
	A-way Set Associative Cache (Here: A = 2)
	A-way Set Associative Cache (Here: A = 2)
	Replacement Policy
	What about writes?
	End slide

