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Today’s Class

• Computer Architecture Background
– General background on caches
– How caches can be used for side-channels
– What cache side-channels can accomplish
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Problem: Processor-Memory Bottleneck

Main 
Memory

CPU
Reg

Processor performance 
doubled about
every 18 months Bus bandwidth 

evolved much slower

Can process at least
512 Bytes/cycle

Core 2 Duo:
Bandwidth
2 Bytes/cycle
Latency
100 cycles

Solution: Caches



Memory Hierarchy
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Solution: Caches
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Cache

• Definition: Computer memory with short access time 
used for the storage of frequently or recently used 
instructions or data



Carnegie Mellon

General Cache Mechanics
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Memory
Larger, slower, cheaper memory 
viewed as partitioned into “blocks”

Data is copied in block-sized 
transfer units

Smaller, faster, more expensive 
memory caches a subset of
the blocks
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General Cache Concepts: Hit
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8 9 14 3Cache

Memory

Data in block b is neededRequest: 14

Block b is in cache: 
Hit!1414
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Cache Miss
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8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache: 
Miss!

Block b is fetched from 
memory

Request: 12

Block b is stored in cache
•Placement policy: 
determines where b goes
•Replacement policy: 
determines which block 
gets evicted (victim)
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Cache Performance Metrics

• Miss Rate
• Fraction of memory references not found in cache (misses / accesses)

• = 1 – hit rate
• Typical numbers (in percentages):

• 3-10% for L1
• can be quite small (e.g., < 1%) for L2, depending on size, etc.

• Hit Time
• Time to deliver a line in the cache to the processor

• includes time to determine whether the line is in the cache
• Typical numbers:

• 1-2 clock cycle for L1
• 5-20 clock cycles for L2

• Miss Penalty
• Additional time required because of a miss

• typically 50-200 cycles for main memory (Trend: increasing!)
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Lets think about those numbers

• Huge difference between a hit and a miss
• Could be 100x, if just L1 and main memory

• How much better is 99% hit rate vs 97% hit rate?
• cache hit time of 1 cycle miss penalty of 100 cycles

• Average access time:
• 97% hits: 1*(0.97) cycle + 0.03 * 100 cycles = 3.97 cycles
• 99% hits: 1*(0.99) cycle + 0.01 * 100 cycles = 1.99 cycles

• This is why “miss rate” is used instead of “hit rate”
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Types of Cache Misses

• Cold (compulsory) miss
• Occurs on first access to a block

• Conflict miss
• Most hardware caches limit blocks to a small subset (sometimes a 

singleton) of the available cache slots
• e.g., block i must be placed in slot (i mod 4)

• Conflict misses occur when the cache is large enough, but
multiple data objects all map to the same slot
• e.g., referencing blocks 0, 8, 0, 8, ... would miss every time

• Capacity miss
• Occurs when the set of active cache blocks (working set) is larger 

than the cache
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Why Caches Work

• Locality: Programs tend to use data and instructions with 
addresses near or equal to those they have used recently

• Temporal locality:
• Recently referenced items are likely

to be referenced again in the near future

• Spatial locality:
• Items with nearby addresses tend

to be referenced close together in time

block

block
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Example: Locality?

• Data:
• Temporal:sum referenced in each iteration
• Spatial: array a[] accessed in stride-1 pattern

• Instructions:
• Temporal: cycle through loop repeatedly
• Spatial: reference instructions in sequence

• Being able to assess the locality of code is a crucial skill 
for a programmer

sum = 0;
for (i = 0; i < n; i++)

sum += a[i]; 
return sum;
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Locality Example

int sum_array_rows(int a[M][N])
{

int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++) 

sum += a[i][j];
return sum;

}

int sum_array_cols(int a[M][N])
{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++) 

sum += a[i][j];
return sum;

}
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Memory Hierarchies

• Some fundamental and enduring properties of hardware and 
software systems:
• Faster storage technologies almost always cost more per byte and 

have lower capacity
• The gaps between memory technology speeds are widening

• True of registers DRAM, DRAM disk, etc.
• Well-written programs tend to exhibit good locality

• These properties complement each other beautifully

• They suggest an approach for organizing memory and 
storage systems known as a memory hierarchy



Memory Hierarchy
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Hierarchy on a modern CPU
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Examples of Caching in the Hierarchy

Cache Type What is Cached? Where is it 
Cached?

Latency (cycles) Managed By

Registers 8-byte words CPU core 0 Compiler

TLB Address 

translations

On-Chip TLB 0 Hardware

L1 cache 64-bytes block On-Chip L1 1 Hardware

L2 cache 64-bytes block On-Chip L2 10 Hardware

Virtual Memory 4-KB page Main memory 100 Hardware+OS

Page cache Parts of files Main memory 100 OS

Network buffer 

cache

Parts of files Local disk 10,000,000 File system client

Browser cache Web pages Local disk 10,000,000 Web browser

CDN Web pages Remote server disks 1,000,000,000 CDN
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General Cache Organization (S, A, B)
A = 2a lines per set

S = 2s sets

v tag 0 1 2 B-1

valid bit
B = 2b bytes per cache block (the data)

Cache size:
S x A x B data bytes
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Cache Read

A = 2a lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits
Address of word:

tag set 
index

block 
offset

data begins at this offset

• Locate set
• Check if any line in set 

has matching tag
• Yes + line valid: hit
• Locate data starting 

at offset
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Example: Direct Mapped Cache (A = 1)

S = 2s sets

Direct mapped: One line per set 
Assume: cache block size 8 bytes

t bits 0…01 100
Address of int:

tagv 0 1 2 3 4 5 6 7

tagv 0 1 2 3 4 5 6 7

tagv 0 1 2 3 4 5 6 7

tagv 0 1 2 3 4 5 6 7

find set
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Example: Direct Mapped Cache (A = 1)

Direct mapped: One line per set 
Assume: cache block size 8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

valid? + match: assume yes = hit

block offset

tag
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Example: Direct Mapped Cache (A = 1)

Direct mapped: One line per set 
Assume: cache block size 8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

valid? + match: assume yes = hit

block offset

int (4 Bytes) is here

No match: old line is evicted and replaced
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E-way Set Associative Cache (Here: A = 1)

E = 2: Two lines per set
Assume: cache block size 8 bytes Address of short int:

t bits 0…01 100

tagv 0 1 2 3 4 5 6 7 tagv 0 1 2 3 4 5 6 7

tagv 0 1 2 3 4 5 6 7 tagv 0 1 2 3 4 5 6 7

tagv 0 1 2 3 4 5 6 7 tagv 0 1 2 3 4 5 6 7

tagv 0 1 2 3 4 5 6 7 tagv 0 1 2 3 4 5 6 7

find set
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A-way Set Associative Cache (Here: A = 2)

A = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

block offset

tag
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A-way Set Associative Cache (Here: A = 2)

A = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

match both

valid? + match: yes = hit

block offset

short int (2 Bytes) is here

No match:
•One line in set is selected for eviction and replacement
•Replacement policies: random, least recently used (LRU), …



Replacement Policy

• Optimally: replace block that is accessed furthest in the future

• Locality argument
• Hasn’t been used recently, less likely to be used in future

• LRU: replace line that was least recently used
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What about writes?

• Multiple copies of data exist:
• L1, L2, Main Memory, Disk

• What to do on a write-hit?
• Write-through (write immediately to memory)
• Write-back (defer write to memory until replacement of line)

• Need a dirty bit (line different from memory or not)

• What to do on a write-miss?
• Write-allocate (load into cache, update line in cache)

• Good if more writes to the location follow
• No-write-allocate (writes immediately to memory)
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