
Comp 590-184:
Hardware Security and Side-Channels

Lecture 3: Caches
January 15, 2026
Andrew Kwong

Slides adapted from Roger 
Dannenberg and Greg Ganger



Today’s Class

• Computer Architecture Background
– General background on caches
– How caches can be used for side-channels
– What cache side-channels can accomplish

2



Carnegie Mellon



Carnegie Mellon

Problem: Processor-Memory Bottleneck

Main 
Memory

CPU
Reg

Processor performance 
doubled about
every 18 months Bus bandwidth 

evolved much slower

Can process at least
512 Bytes/cycle

Core 2 Duo:
Bandwidth
2 Bytes/cycle
Latency
100 cycles

Solution: Caches



Memory Hierarchy

5

Solution: Caches



Carnegie Mellon

Cache

• Definition: Computer memory with short access time 
used for the storage of frequently or recently used 
instructions or data



Carnegie Mellon

General Cache Mechanics

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

9 3Cache

Memory
Larger, slower, cheaper memory 
viewed as partitioned into “blocks”

Data is copied in block-sized 
transfer units

Smaller, faster, more expensive 
memory caches a subset of
the blocks

10

4

1010

44



Carnegie Mellon

General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 14

Block b is in cache: 
Hit!1414



Carnegie Mellon

Cache Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache: 
Miss!

Block b is fetched from 
memory

Request: 12

Block b is stored in cache
•Placement policy: 
determines where b goes
•Replacement policy: 
determines which block 
gets evicted (victim)

9

1212

12



Carnegie Mellon

Cache Performance Metrics

• Miss Rate
• Fraction of memory references not found in cache (misses / accesses)

• = 1 – hit rate
• Typical numbers (in percentages):

• 3-10% for L1
• can be quite small (e.g., < 1%) for L2, depending on size, etc.

• Hit Time
• Time to deliver a line in the cache to the processor

• includes time to determine whether the line is in the cache
• Typical numbers:

• 1-2 clock cycle for L1
• 5-20 clock cycles for L2

• Miss Penalty
• Additional time required because of a miss

• typically 50-200 cycles for main memory (Trend: increasing!)



Carnegie Mellon

Lets think about those numbers

• Huge difference between a hit and a miss
• Could be 100x, if just L1 and main memory

• How much better is 99% hit rate vs 97% hit rate?
• cache hit time of 1 cycle miss penalty of 100 cycles

• Average access time:
• 97% hits: 1*(0.97) cycle + 0.03 * 100 cycles = 3.97 cycles
• 99% hits: 1*(0.99) cycle + 0.01 * 100 cycles = 1.99 cycles

• This is why “miss rate” is used instead of “hit rate”



Carnegie Mellon

Types of Cache Misses

• Cold (compulsory) miss
• Occurs on first access to a block

• Conflict miss
• Most hardware caches limit blocks to a small subset (sometimes a 

singleton) of the available cache slots
• e.g., block i must be placed in slot (i mod 4)

• Conflict misses occur when the cache is large enough, but
multiple data objects all map to the same slot
• e.g., referencing blocks 0, 8, 0, 8, ... would miss every time

• Capacity miss
• Occurs when the set of active cache blocks (working set) is larger 

than the cache



Carnegie Mellon

Why Caches Work

• Locality: Programs tend to use data and instructions with 
addresses near or equal to those they have used recently

• Temporal locality:
• Recently referenced items are likely

to be referenced again in the near future

• Spatial locality:
• Items with nearby addresses tend

to be referenced close together in time

block

block



Carnegie Mellon

Example: Locality?

• Data:
• Temporal:sum referenced in each iteration
• Spatial: array a[] accessed in stride-1 pattern

• Instructions:
• Temporal: cycle through loop repeatedly
• Spatial: reference instructions in sequence

• Being able to assess the locality of code is a crucial skill 
for a programmer

sum = 0;
for (i = 0; i < n; i++)

sum += a[i]; 
return sum;



Carnegie Mellon

Locality Example

int sum_array_rows(int a[M][N])
{

int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++) 

sum += a[i][j];
return sum;

}

int sum_array_cols(int a[M][N])
{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++) 

sum += a[i][j];
return sum;

}



Carnegie Mellon

Memory Hierarchies

• Some fundamental and enduring properties of hardware and 
software systems:
• Faster storage technologies almost always cost more per byte and 

have lower capacity
• The gaps between memory technology speeds are widening

• True of registers DRAM, DRAM disk, etc.
• Well-written programs tend to exhibit good locality

• These properties complement each other beautifully

• They suggest an approach for organizing memory and 
storage systems known as a memory hierarchy



Memory Hierarchy

17



Carnegie Mellon

Hierarchy on a modern CPU



Carnegie Mellon

Examples of Caching in the Hierarchy

Cache Type What is Cached? Where is it 
Cached?

Latency (cycles) Managed By

Registers 8-byte words CPU core 0 Compiler

TLB Address 

translations

On-Chip TLB 0 Hardware

L1 cache 64-bytes block On-Chip L1 1 Hardware

L2 cache 64-bytes block On-Chip L2 10 Hardware

Virtual Memory 4-KB page Main memory 100 Hardware+OS

Page cache Parts of files Main memory 100 OS

Network buffer 

cache

Parts of files Local disk 10,000,000 File system client

Browser cache Web pages Local disk 10,000,000 Web browser

CDN Web pages Remote server disks 1,000,000,000 CDN



Carnegie Mellon

General Cache Organization (S, A, B)
A = 2a lines per set

S = 2s sets

v tag 0 1 2 B-1

valid bit
B = 2b bytes per cache block (the data)

Cache size:
S x A x B data bytes



Carnegie Mellon

Cache Read

A = 2a lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits
Address of word:

tag set 
index

block 
offset

data begins at this offset

• Locate set
• Check if any line in set 

has matching tag
• Yes + line valid: hit
• Locate data starting 

at offset



Carnegie Mellon

Example: Direct Mapped Cache (A = 1)

S = 2s sets

Direct mapped: One line per set 
Assume: cache block size 8 bytes

t bits 0…01 100
Address of int:

tagv 0 1 2 3 4 5 6 7

tagv 0 1 2 3 4 5 6 7

tagv 0 1 2 3 4 5 6 7

tagv 0 1 2 3 4 5 6 7

find set



Carnegie Mellon

Example: Direct Mapped Cache (A = 1)

Direct mapped: One line per set 
Assume: cache block size 8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

valid? + match: assume yes = hit

block offset

tag



Carnegie Mellon

Example: Direct Mapped Cache (A = 1)

Direct mapped: One line per set 
Assume: cache block size 8 bytes

t bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

valid? + match: assume yes = hit

block offset

int (4 Bytes) is here

No match: old line is evicted and replaced



Carnegie Mellon

E-way Set Associative Cache (Here: A = 1)

E = 2: Two lines per set
Assume: cache block size 8 bytes Address of short int:

t bits 0…01 100

tagv 0 1 2 3 4 5 6 7 tagv 0 1 2 3 4 5 6 7

tagv 0 1 2 3 4 5 6 7 tagv 0 1 2 3 4 5 6 7

tagv 0 1 2 3 4 5 6 7 tagv 0 1 2 3 4 5 6 7

tagv 0 1 2 3 4 5 6 7 tagv 0 1 2 3 4 5 6 7

find set



Carnegie Mellon

A-way Set Associative Cache (Here: A = 2)

A = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

block offset

tag



Carnegie Mellon

A-way Set Associative Cache (Here: A = 2)

A = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

match both

valid? + match: yes = hit

block offset

short int (2 Bytes) is here

No match:
•One line in set is selected for eviction and replacement
•Replacement policies: random, least recently used (LRU), …



Replacement Policy

• Optimally: replace block that is accessed furthest in the future

• Locality argument
• Hasn’t been used recently, less likely to be used in future

• LRU: replace line that was least recently used



Carnegie Mellon

What about writes?

• Multiple copies of data exist:
• L1, L2, Main Memory, Disk

• What to do on a write-hit?
• Write-through (write immediately to memory)
• Write-back (defer write to memory until replacement of line)

• Need a dirty bit (line different from memory or not)

• What to do on a write-miss?
• Write-allocate (load into cache, update line in cache)

• Good if more writes to the location follow
• No-write-allocate (writes immediately to memory)




	Comp 590-184:�Hardware Security and Side-Channels��
	Today’s Class
	Slide Number 3
	Problem: Processor-Memory Bottleneck
	Memory Hierarchy
	Cache
	General Cache Mechanics
	General Cache Concepts: Hit
	Cache Miss
	Cache Performance Metrics
	Lets think about those numbers
	Types of Cache Misses
	Why Caches Work
	Example: Locality?
	Locality Example
	Memory Hierarchies
	Memory Hierarchy
	Hierarchy on a modern CPU
	Examples of Caching in the Hierarchy
	General Cache Organization (S, A, B)
	Cache Read
	Example: Direct Mapped Cache (A = 1)
	Example: Direct Mapped Cache (A = 1)
	Example: Direct Mapped Cache (A = 1)
	E-way Set Associative Cache (Here: A = 1)
	A-way Set Associative Cache (Here: A = 2)
	A-way Set Associative Cache (Here: A = 2)
	Replacement Policy
	What about writes?
	End slide

