Comp 590-184:
Hardware Security and Side-Channels

Caching 101

1931584

J3||ews

CPU
Registers

L2 Cache

L3 Cache

Disk Storage

Why Cache?

* Large attack surface. Shared across cores/sockets.

* Fast. Can be used to build high-bandwidth channels

* Many states. Can encode secrets spatially to further improve bandwidth
and precision.

* There exist many cache-like structures. The same attack concepts and
tricks will apply.

The Goal:
Monitor access patterns at cache set/line
granularity

Goal

° Attacker Wa nts to |ea rn Which <« Physical Address Generated by CPU
cache sets/lines the victim

accessed /

Block offset size = log2(block size)

i n t S e Cr e t = OX D E A D B E E F Index size = log2(Number of Cache lines or Number of sets)
int *ptr=&secret;
int x="ptr;

Tag size = address size - index size - offset size

* (Can reveal sensitive
information

Leaking Crypto Algorithm : AES

Load State Array | | Compute Round Keys

XOR 1st Round Key

* AES implementations can use table

lookups Nine
. . Rounds
* S-Box substitutions
e T-tables
WENENED o] Bos | Boz) Bo s
HENEWER by o Byo| Buf B 2 Raund

XORnth Round Key
Unload State Array

az.u aZ a!.! 2,32 ’ bz.n bz.: bl.! o |
a].ﬂ a].l a!.! a].] b].ﬂ 2,2 2

N

Leaking Crypto Algorithm: RSA

e Square-and-Multiply Exponentiation

r=1
InPUt: for 1 = n-1 to @ do
base b r = sqr(r)
modulo m r = mod(r, m)
exponent d = (d,_; ...dp)» if d; == 1 then
r = mul(r, b)
OUtPUt: r = mod(r, m)
b? mod m end
end

Prime+Probe Detection Count Line Plot

Keystroke Extraction L TR 1
« Keystroke cadence yields jo-—fEHE. B W NS
keystroke extraction
* Monitor cacheline that RPN 11 SO 8 L 1

registers keystrokes fime (m)
e Victim will access that T Betweon AdlcentKeystrokes ve. Key Typed

cacheline every time
he types a character

3
£

Time Between Adjacent Keystrokes (seconds)
° ° °
b 2 &

° e °
S = o

Covert Channel

* TwoO processes can

mmunicate over cach T
communicate over cache e & oS
covert channel ; @*@ d

» Useful for Spectre!
o AN mm ¥ (e=]
O

Processor Cache

How can attacker monitor cacheline usage?

Attack Strategy #1: Flush+Reload

* The flush instructions allow explicit control of cache states
° Inx86, clflush vaddr
* In ARM, DC CIVAC vaddr

* What are these flush instructions used for except for attacks?

* For coherence, in the case when the data in the cache is inconsistent
with the data in the DRAM.

Caching 101

1931584

J3||ews

CPU
Registers

/
/ \
/ Main Memory -

/ Disk Storage

\

Flush+Reload steps

1. Attacker flushes shared memory

2. Attacker waits for victim to Victim
access (or not) the memory
3. Attacker reloads the cache line flush reload

| . \
Madle with Excalidrow

4. Latency reveals whether the Atacker
victim accessed that cache line

Flush+Reload

A shared cache line

Victim Attacker (latency reveals presence in cache)
Attacker: Reload ->
LOW latency
Attacker: Victim:
Flush Access
Cache Time
Attacker: Victim:
217 Flush No Access
Reghters Attacker:
o Reload >
L3 Cache DRAM HIGH Iatency
Main Memory
Disk Storage 5|2

Flush+Reload Cache Lines

Attacker Reload (slow) Victim

Reload (slow)

Reload (slow)

50| Fo.1| Fo.2| Tz Bo,0| o1 | Boz| Bo 2
Reload (fast) HENENER by ol by | by of by 5

20 2 azizla; > 6, [5.] b
Reload %0 3| BN B0 32| 9.3
(slow) S~

Attacker learns secret byte=3

Some possible outcomes

Victim

A ket

Victim

A ke

Py
s’

Pl
“
b

[

i

?

o I8

Lattacker

r=1
for i = n-1 to @ do
r = sqr(r)

r = mod(r, m)

if d; == 1 then

r = mul(r, b)

r = mod(r, m)

Shared Memory in Practice

Page Mapping

Page Table per process: maps virtual to
Process 1 hvsical add
physical addresses Physical Address Space
(limited by DRAM size)
4KB L
PA
4KB
Process 2 4KB
4KB
Virtual Address Space
(Programmer's View)

Transparent Page Deduplication

Process 1
Page Table Physical Address Space
per process (limited by DRAM size)
VA
4KB
-7 4KB
7
7
7’
7
7
Vd
7’
7
Process 2 -5
-7 0O
7
—>l— O
4KB N\
the same
content
Virtual Address Space

Attack Strategy #2: ?

* Cache state manipulation instructions
° In X86, clflush vaddr
* In ARM, DC CIVAC vaddr

* What if these instructions are not available in user space?

* Apple devices

* “Except ARMVv8-A CPUs, ARM processors do not support a flush
instruction”

* Flush instructions removed from Chrome’s NaCL after

Rowhammer
from ARMageddon: Cache Attacks on Mobile Devices (USENIX'16)

Attack Strategy #2: Evict+Reload

* |If we can’ use a flush instruction, force eviction instead

1. Attacker accesses large amount
of memory to evict shared
memory

2. Attacker waits for victim to
access (or not) the memory

3. Attacker reloads the cache line

4. Latency reveals whether the
victim accessed that cache line

Attack Strategy #2: Evict+Reload

L . A shared cache line
Victim Attacker Attacker:

Attacker: Reload -> LOW
Access latency
alarge Victim:
buffer Access

Cache . Time

Attacker: Victim:
access No Access
a large
buffer Attacker:

Reload ->

HIGH latency
DRAM

Lessons Learnt So Far

e flush+reload

* Requires “flush” instruction
* Evict+reload

* Doesn’t require “flush”

The fundamental problem:
shared memory between
different security domains.

Source: https.//kb.vmware.com/s/article/2080735

Security considerations and
disallowing inter-Virtual Machine
Transparent Page Sharing (2080735)

Last Updated: 8/25/2021 Categories: Informational Total Views: 66593

Vv Details

This article acknowledges the recent academic research that leverages Transparent Page
Sharing (TPS) to gain unauthorized access to data under certain highly controlled conditions
and documents VMware’s precautionary measure of restricting TPS to individual virtual
machines by default in upcoming ESXi releases. At this time, VMware believes that the
published information disclosure due to TPS between virtual machines is impractical in a real
world deployment.

Published academic papers have demonstrated that by forcing a flush and reload of cache
memory, it is possible to measure memory timings to try and determine an AES encryption
key in use on another virtual machine running on the same physical processor of the host
server if Transparent Page Sharing is enabled between the two virtual machines. This
technique works only in a highly controlled system configured in a non-standard way that
VMware believes would not be recreated in a production environment. .

Even though VMware believes information being disclosed in real world conditions is
unrealistic, out of an abundance of caution upcoming ESXi Update releases will no longer
enable TPS between Virtual Machines by default (TPS will still be utilized within individual
VMs).

Attack Strategy #3: Prime+Probe

* Removes requirement of shared memory

1. Attacker “primes” a cache-set by
accessing A elements in the
cache-set

e (alled an eviction set

2. Attacker waits for victim to
access (or not) the memory

3. Attacker reloads each cache line

4. Latency reveals whether the
victim accessed that cache line

Attack Strategy #3: Prime+Probe

Victim Attacker

ways

Attacker:
Prime a Victim:
cache set Access

DRAM

Time

Attack Strategy #3: Prime+Probe

Victim Attacker

Attacker:
Prime a Victim:
cache set Access

. DRAM

Time

Attack Strategy #3: Prime+Probe

Victim Attacker .
Receiver’s line
Attacker: Attacker:
Prime a R Probe ->
cache set Access high latency

Time

DRAM

Attack Strategy #3: Prime+Probe

Victim Attacker .
Receiver’s line
Attacker: Attacker:
Prime a Victim: el
cache set Access high latency
Time
Attacker: Victim: Attacker:
Prime a No Access Probe ->
cache set low latency

DRAM

Timing Code

In x86, 8 GPR:
lfence * rax, rbx, rcx, rdx
mfence * rsp, rbp

* rsi, rdi
rdtsc w.n

r” means 64-bit

mov %eax, %edi replacing “r” with “e” means the lower 32 bits.

mov (<vaddr>), %rsi

1fence rdtsc:
* Read Time-Stamp Counter
rdtsc e edx:eax :=TimeStampCounter;

sub %edi, %eax

lfence:
* Load Fence
* Performs a serializing operation on all load instructions

More Background

Address Translation (4KB page)

48 12 11 0
Virtual Address (48bit): Virtual page number (VPN) Page offset
(12 bits)
\ J
Page
Table Copy
page offset
31 12 11 0
Physical Address (32bit): Physical page number (PPN) P?f; gf:s;at
its

N-way Set-Associative Cache

* Does cache use virtual address or physical address?

INCOMING ADDRESS

Tag ! Index

——\
Tag Data Tag Data Tag Data

offset

Tag Data

8 sets
A

L=__=_=_==] SET
o o

O O
‘ Y
4 ways

Using Caches with Virtual Memory

Virtually-Addressed Cache Physically-Addressed Cache
CcPU Caciﬂ\e | i;TLB l mlt\a/lr?\icr)]ry l CPU i;TLB e Caci’]e l ml\eﬂ:lic:lry l
e FAST: No virtual=»physical translation on * Avoids stale cache data after context
cache hits switch
® Problem: Must flush cache after context e SLOW: virtual=>»physical translation
switch before every cache access

Best of Both Worlds (L1 Cache):
Virtually-Indexed, Physically-Tagged Cache (VIPT)

— ' : Main]
<_>I /l‘lﬂ—l’ | }] memory

\

Cache index comes entirely from address bits
in page offset — don’t need to wait for TLB to
start cache lookup!

Cache

Using Huge Pages

* Huge page size: 2MB or 1GB

48 12 11 0
Virtual Address :
4KB Virtual page number FECEIDNEE,
page (12 bits)
Cache mapping: Tag Set Index Line offset (6
(256 sets) (8 bits) bits)
48 21 20 0
Virtual Address : -
. Page offset
2MB page
pPag Virtual page number (21 bits)

Quiz!

* | have a virtual address: OxAAAA

Question 1:
What is the cache set index?

* The cache parameters are as

below
* Cache size: 32KB
* Line size/Block size: 64B Question 2:
* Associativity: 8 What is the next address that map to

the same cache set as this one
but not the same cache line?

Takeaways

* Practical challenges in implementing a reliable cache attack
e Page sharing
e Uncertainty due to page mapping
e Replacement policy
* Etc.

* Hardware and software optimizations make attacks easier
* Transparent page sharing
* Copy-on-write
* Huge pages
* Virtually-indexed and physically-tagged caches

	Comp 590-184:�Hardware Security and Side-Channels��
	Caching 101
	Why Cache?
	The Goal:�Monitor access patterns at cache set/line granularity
	Goal
	Leaking Crypto Algorithm : AES
	Leaking Crypto Algorithm: RSA
	Keystroke Extraction
	Covert Channel
	How can attacker monitor cacheline usage?
	Attack Strategy #1: Flush+Reload
	Caching 101
	Flush+Reload steps
	Flush+Reload
	Flush+Reload
	Some possible outcomes
	Shared Memory in Practice
	Page Mapping
	Transparent Page Deduplication
	Attack Strategy #2: ?
	Attack Strategy #2: Evict+Reload
	Attack Strategy #2: Evict+Reload
	Lessons Learnt So Far
	Attack Strategy #3: Prime+Probe
	Attack Strategy #3: Prime+Probe
	Attack Strategy #3: Prime+Probe
	Attack Strategy #3: Prime+Probe
	Attack Strategy #3: Prime+Probe
	Timing Code
	More Background
	Address Translation (4KB page)
	N-way Set-Associative Cache
	Using Caches with Virtual Memory
	Best of Both Worlds (L1 Cache):
Virtually-Indexed, Physically-Tagged Cache (VIPT)
	Using Huge Pages
	Quiz!
	Takeaways
	End slide

