
Comp 590-184:
Hardware Security and Side-Channels

Lecture 4: Practical Cache Attacks
January 20, 2026
Andrew Kwong

Caching 101

3

Why Cache?

• Large attack surface. Shared across cores/sockets.

• Fast. Can be used to build high-bandwidth channels

• Many states. Can encode secrets spatially to further improve bandwidth
and precision.

• There exist many cache-like structures. The same attack concepts and
tricks will apply.

The Goal:
Monitor access patterns at cache set/line
granularity

Goal

• Attacker wants to learn which
cache sets/lines the victim
accessed

• Can reveal sensitive
information

int secret=0xDEADBEEF
int *ptr=&secret;
int x=*ptr;

Leaking Crypto Algorithm : AES

• AES implementations can use table
lookups
• S-Box substitutions
• T-tables

Leaking Crypto Algorithm: RSA

• Square-and-Multiply Exponentiation

Input :
base b
modulo m
exponent d = (dn−1 ...d0)2

Output:
bd mod m

r = 1

for i = n-1 to 0 do

r = sqr(r)

r = mod(r, m)

if di == 1 then

r = mul(r, b)

end

end

r = mod(r, m)

Keystroke Extraction

9

• Keystroke cadence yields
keystroke extraction

• Monitor cacheline that
registers keystrokes
• Victim will access that

cacheline every time
he types a character

Covert Channel

• Two processes can
communicate over cache
covert channel

• Useful for Spectre!

10

How can attacker monitor cacheline usage?

Attack Strategy #1: Flush+Reload

• The flush instructions allow explicit control of cache states
• In x86, clflush vaddr
• In ARM, DC CIVAC vaddr

• What are these flush instructions used for except for attacks?
• For coherence, in the case when the data in the cache is inconsistent

with the data in the DRAM.

Caching 101

13

Flush+Reload steps

1. Attacker flushes shared memory
2. Attacker waits for victim to

access (or not) the memory
3. Attacker reloads the cache line
4. Latency reveals whether the

victim accessed that cache line

Flush+Reload

Cache

Victim Attacker
A shared cache line
(latency reveals presence in cache)

Time

DRAM

Attacker:
Flush

Victim:
Access

Attacker:
Flush

Victim:
No Access

Attacker: Reload ->
LOW latency

Attacker:
Reload ->
HIGH latency

Flush+Reload Cache Lines

Attacker VictimReload (slow)

Reload (slow)

Reload (slow)

Reload (fast)

Reload
(slow)

Attacker learns secret byte=3

Some possible outcomes

17

r = 1

for i = n-1 to 0 do
r = sqr(r)

r = mod(r, m)

if di == 1 then

r = mul(r, b)

end
end

r = mod(r, m)

Shared Memory in Practice

Page Mapping

Physical Address Space
(limited by DRAM size)

4KB
VA

PA

Page Table per process: maps virtual to
physical addresses

4KB

4KB

4KB

Process 1

Process 2

Virtual Address Space
(Programmer's View)

Transparent Page Deduplication

Physical Address Space
(limited by DRAM size)

4KB

4KB

VA

PA

Page Table
per process

4KB

Process 1

Process 2

the same
content

Virtual Address Space
(Programmer's View)

Attack Strategy #2: ?

• Cache state manipulation instructions
• In X86, clflush vaddr
• In ARM, DC CIVAC vaddr

• What if these instructions are not available in user space?
• Apple devices
• “Except ARMv8-A CPUs, ARM processors do not support a flush

instruction”
• Flush instructions removed from Chrome’s NaCL after

Rowhammer
from ARMageddon: Cache Attacks on Mobile Devices (USENIX’16)

Attack Strategy #2: Evict+Reload

• If we can’ use a flush instruction, force eviction instead

1. Attacker accesses large amount
of memory to evict shared
memory

2. Attacker waits for victim to
access (or not) the memory

3. Attacker reloads the cache line
4. Latency reveals whether the

victim accessed that cache line

Attack Strategy #2: Evict+Reload

Cache

Victim Attacker
A shared cache line

DRAM

Time

Attacker:
Access
a large
buffer

Victim:
Access

Attacker:
access
a large
buffer

Victim:
No Access

Attacker:
Reload -> LOW
latency

Attacker:
Reload ->
HIGH latency

Lessons Learnt So Far

The fundamental problem:
shared memory between
different security domains.

Source: https://kb.vmware.com/s/article/2080735

• flush+reload
• Requires “flush” instruction

• Evict+reload
• Doesn’t require “flush”

Attack Strategy #3: Prime+Probe

• Removes requirement of shared memory

1. Attacker “primes” a cache-set by
accessing A elements in the
cache-set
• Called an eviction set

2. Attacker waits for victim to
access (or not) the memory

3. Attacker reloads each cache line
4. Latency reveals whether the

victim accessed that cache line

Attack Strategy #3: Prime+Probe

Victim Attacker

Time

DRAM

Attacker:
Prime a
cache set

Victim:
Access

Sender’s line

Receiver’s line

ways

Cache Set

Attack Strategy #3: Prime+Probe

Victim Attacker

Time

DRAM

Attacker:
Prime a
cache set

Victim:
Access

Sender’s line

Receiver’s line

Attack Strategy #3: Prime+Probe

Cache

Victim Attacker

Time

DRAM

Attacker:
Prime a
cache set

Victim:
Access

Sender’s line

Receiver’s line

Attacker:
Probe ->

high latency

Attack Strategy #3: Prime+Probe

Cache

Victim Attacker

Time

DRAM

Attacker:
Prime a
cache set

Victim:
Access

Victim:
No Access

Attacker:
Prime a
cache set

Sender’s line

Receiver’s line

Attacker:
Probe ->

high latency

Attacker:
Probe ->

low latency

Timing Code

lfence

mfence

rdtsc

mov %eax, %edi
mov (<vaddr>), %rsi

lfence

rdtsc

sub %edi, %eax

In x86, 8 GPR:
• rax, rbx, rcx, rdx
• rsp, rbp
• rsi, rdi
“r” means 64-bit
replacing “r” with “e” means the lower 32 bits.

rdtsc:
• Read Time-Stamp Counter
• edx:eax := TimeStampCounter;

lfence:
• Load Fence
• Performs a serializing operation on all load instructions

More Background

Address Translation (4KB page)

Physical Address (32bit):

Virtual Address (48bit):

48 12 11 0

Virtual page number (VPN) Page offset
(12 bits)

31 12 11 0

Physical page number (PPN) Page offset
(12 bits)

Page
Table Copy

page offset

8

N-way Set-Associative Cache

• Does cache use virtual address or physical address?

Tag Data Tag DataTag Data Tag Data
8

se
ts

4 ways

=? =? =? =?

INCOMING ADDRESS

Tag Index

SET

WAY

offset

Using Caches with Virtual Memory

Cache TLBCPU
Main

memory

Physically-Addressed Cache

• Avoids stale cache data after context
switch

• SLOW: virtualphysical translation
before every cache access

Virtually-Addressed Cache

• FAST: No virtualphysical translation on
cache hits

• Problem: Must flush cache after context
switch

CacheTLBCPU
Main

memory

Best of Both Worlds (L1 Cache):
Virtually-Indexed, Physically-Tagged Cache (VIPT)

Cache

CPU Main
memory

TLB

Cache index comes entirely from address bits
in page offset – don’t need to wait for TLB to
start cache lookup!

Using Huge Pages

• Huge page size: 2MB or 1GB

Virtual Address :
4KB page

48 12 11 0

Virtual page number Page offset
(12 bits)

48 21 20 0

Virtual page number Page offset
(21 bits)

Virtual Address :
2MB page

Tag Set Index

(8 bits)

Line offset (6

bits)
Cache mapping:

(256 sets)

23

• I have a virtual address: 0xAAAA

• The cache parameters are as
below

• Cache size: 32KB
• Line size/Block size: 64B
• Associativity: 8

Question 1:
What is the cache set index?

Question 2:
What is the next address that map to

the same cache set as this one
but not the same cache line?

Quiz!

Takeaways

• Practical challenges in implementing a reliable cache attack
• Page sharing
• Uncertainty due to page mapping
• Replacement policy
• Etc.

• Hardware and software optimizations make attacks easier
• Transparent page sharing
• Copy-on-write
• Huge pages
• Virtually-indexed and physically-tagged caches

24

	Comp 590-184:�Hardware Security and Side-Channels��
	Caching 101
	Why Cache?
	The Goal:�Monitor access patterns at cache set/line granularity
	Goal
	Leaking Crypto Algorithm : AES
	Leaking Crypto Algorithm: RSA
	Keystroke Extraction
	Covert Channel
	How can attacker monitor cacheline usage?
	Attack Strategy #1: Flush+Reload
	Caching 101
	Flush+Reload steps
	Flush+Reload
	Flush+Reload
	Some possible outcomes
	Shared Memory in Practice
	Page Mapping
	Transparent Page Deduplication
	Attack Strategy #2: ?
	Attack Strategy #2: Evict+Reload
	Attack Strategy #2: Evict+Reload
	Lessons Learnt So Far
	Attack Strategy #3: Prime+Probe
	Attack Strategy #3: Prime+Probe
	Attack Strategy #3: Prime+Probe
	Attack Strategy #3: Prime+Probe
	Attack Strategy #3: Prime+Probe
	Timing Code
	More Background
	Address Translation (4KB page)
	N-way Set-Associative Cache
	Using Caches with Virtual Memory
	Best of Both Worlds (L1 Cache):
Virtually-Indexed, Physically-Tagged Cache (VIPT)
	Using Huge Pages
	Quiz!
	Takeaways
	End slide

