Comp 590-184:
Hardware Security and Side-Channels

Slides adapted from Pepe Vila
(https://vwzq.net/papers/evictionsets19.pdf)

Today’s Class

* How to practically build eviction sets for conducting cache
attacks

Page Mapping

Page Table per process: maps virtual to
Process 1 hvsical add
physical addresses Physical Address Space
(limited by DRAM size)
4KB L
PA
4KB
Process 2 4KB
4KB
Virtual Address Space
(Programmer's View)

Address Translation (4KB page)

48 12 11 0
Virtual Address (48bit): Virtual page number (VPN) Page offset
(12 bits)
\ J
Page
Table Copy
page offset
31 12 11 0
Physical Address (32bit): Physical page number (PPN) P?f; gf:s;at
its

Cache Indexing

4 KB page
2 MB page

32 20 16 1 |5 0|
Frame number Page offset
Large frame number Large Page offset
- ~ A ~ _/\-__._Y__f
Tag Set index Line offset

* | have a physical address:
OxAAAA Question 1:

What is the cache set index?

* The cache parameters are as

below
* Cache size: 32KB Question 2:
* Line size/Block size: 64B What is the next address that maps

to the same cache set as this one

* Associativity: 8 _
but not the same cache line?

Evict+Reload

Cache

Victim

Attacker

Attacker:
Access

a large
buffer

. A shared cache line

Attacker:
Reload -> LOW
latency
Victim:
Access

Time

DRAM

Attack Strategy #3: Prime+Probe

Victim Attacker

ways

Attacker:
Prime a Victim:
cache set Access

DRAM

Time

Attack Strategy #3: Prime+Probe

Victim Attacker

Attacker:
Prime a Victim:
cache set Access

. DRAM

Time

Attack Strategy #3: Prime+Probe

Victim Attacker .
Receiver’s line
Attacker: Attacker:
Prime a R Probe ->
cache set Access high latency

Time

DRAM

Attack Strategy #3: Prime+Probe

Victim Attacker .
Receiver’s line
Attacker: Attacker:
Prime a R Probe ->
cache set Access high latency

Time

DRAM

Eviction Sets

CACHE
Set of addresses that collide in cache: SLICE 0
l.e. addresses mapped into the same cache
set E

sets

SLICE 1

AiAneposse

sets

Eviction Sets

CACHE

Find addresses that collide in cache: i.e. SLICE
addresses mapped into the same cache set L]

Aianeposse

sets

SLICE 1

AiAneposse

sets

Eviction Sets

CACHE

Find addresses that collide in cache: i.e. SLICE
addresses mapped into the same cache set H

Aianeposse

sets

SLICE 1

AiAneposse

sets

Eviction Sets

CACHE
Find addresses that collide in cache: i.e. SLICE 0
addresses mapped into the same cache set
g
Find associativity many colliding addresses: =
i.e. an eviction set SLICE 1
sets

Attacks

{ Efficient attacks require small eviction sets }

Attacks

Efficient attacks require small eviction sets

Prime+Probe

Prime+Probe Attacks
w : w
Q\4
PRIME PRIME-PROBE Interval PROBE
S
—>
CO0000 =

4- t 7
wwwww Cache Set

associative
CCCCC

Attacks

Efficient attacks require small eviction sets

Prime+Probe
Rowhammer

Prime+Probe Attacks e‘
g «» @ "
PRIME PRIME-PROBE Interval PROBE
S
N - —>
ToC000 o?

44444444 “—~
associative Cache Set
CCCCC

Attacks

Spectre

[Efficient attacks require small eviction sets }

Prime+Probe
Rowhammer

il

Prime+Probe Attacks

g- 9
w] w
PRIME PRIME-PROBE Interval PROBE

S

00000 =4

A7

SPECTRE

44444444 “—~
associative Cache Set
CCCCC

Problem

-

g

Unknown translation from virtual to physical addresses J

USER PROCESS

PHYSICAL MEMORY

text

heap

stack

low

AL

high

CACHE

SLICEO

[EE

sets

MMU

SLICE 1

sets

Aianeposse

AiAneposse

Problem { In some scenarios, even unknown virtual address]

USER PROCESS PHYSICAL MEMORY CACHE

o SLICEO
<script> §
var foo = new Uint32Array (N) ; s,
fool[l2]; %
c.. - <
</script> ‘? ‘? ‘? sets

Eﬁ

text heap stack sets

low high

Problem

USER PROCESS

PHYSICAL MEMORY

oo e

var foo
foo[l2];

<script>
= new Uint32Array (N) ;

</script>

text

heap

stack

low

high

CACHE

SLICEO

sets

Aianeposse

AiAneposse

Defintions

« Two virtual address x and y are congruent if they map to
same cache set

X=Yy
* The equivalence class [x] of x w.r.t. ~is the set of all virtual
addresses that maps to the same cache set as x

* sel(-): set index bits
* pt(-): physical address
o X =y iff set(pt(x))= set(pt(y))

Definitions

« \We say that a set of virtual addresses S, for a cache of
associativity a is:

e an eviction set for x if x ¢ S and at least a addresses in
S map to the same cache set as x:

l]n S| >a

Eviction Test

* a,Iis a victim address we want to evict
« Testto see if S={a,, a4, ..., 8,4} IS an eviction set for a,

O
av a0 a1 an av

Finding minimal eviction sets

‘ « Find alarge eviction set for an address V:)

- Pick “enough’ addresseséat random
a, d, a, .. a

E\f___ J

N

- Timing test:

n

Finding minimal eviction sets

‘ (~« Find alarge eviction set for an address V-)

- Pick “enough” addresses g_t random
av 80 a1 an av

N

- Timing test:

[Reduce initial large eviction set into its minimal core

Baseline Algorithm

In: S=candidate set, x=victim address
Out: R=minimal eviction set for v

R« {}
while |R| < a do
c < pick(S)
if =TEST(RU (S \ {c}), x) then
R+ RU{c}
end if
S+ S\ {c}
end while
return R

A AN A e

Baseline algorithm

Start with large enough eviction set
S of size N

A —
[\

Baseline algorithm

Pick candidate element C, and

Test if remaining set TEST(S\{C}) is
still an eviction set

NI

A —
[\

Baseline algorithm

If TEST(S{C}) = True, discard C

NI

A —
[\

3

X

V¥

Baseline algorithm

and continue with N’=N-1

NI

A —
[\

Baseline algorithm

We repeat this process several
times

NI

‘ —
[|

3

X

V¥

Baseline algorithm

We repeat this process several
times

NI

‘ —
[\

3

X

V¥

Baseline algorithm

We repeat this process several
times

NI

‘ —
[\

3

X

V¥

Baseline algorithm

We repeat this process several
times

NI

1 —
[|

3

X

V¥

Baseline algorithm

Until we find an element C such
that when removed the remaining
set stops being an eviction set:

v TEST(S\{C}) = False

1 —
[|

Baseline algorithm

We learn that C is congruent
to x

NI

‘ —
[\

Baseline algorithm

We keep track of it, and insert it
againin S

NI

‘ —
[\

Baseline algorithm

We repeat this process several
times

NI

‘ —
[\

3

X

V¥

Baseline algorithm

NI

‘ —
[|

We repeat this process several
times

3

Y S

)

V¥

Baseline algorithm

We repeat this process several
times

NI

1 —
[\

Baseline algorithm

We repeat this process several
times

NI

1 —
[\

Baseline algorithm

We repeat this process several
times

NI

‘ —
[\

Baseline algorithm

We repeat this process several
times

NI

A —
[|

Baseline algorithm

We repeat this process several
times

‘ —
[|

3

X

V¥

Baseline algorithm

We repeat this process several
times

‘ —
[|

3

X

V¥

Baseline algorithm

We repeat this process several
times

NI
| L | P

3

X

V¥

Baseline algorithm

We repeat this process several
times

‘ —
[\

Baseline algorithm

Until we have identified
ASSOCIATIVITY many elements
representing the eviction set’s core!

A —_

ASSOCIATIVITY

Baseline Algorithm

In: S=candidate set, x=victim address
Out: R=minimal eviction set for v

R« {}
while |R| < a do
c < pick(S)
if =TEST(RU (S \ {c}), x) then
R+ RU{c}
end if
S+ S\ {c}
end while
return R

A AN A e

Baseline algorithm

O(N2) memory accesses

ASSOCIATIVITY

Threshold Group Testing

®
e ,.° ® (10 individual tests)
{Group testing problem by Robert Dorfman (1943) J o ® ®oe

Blood samples

Threshold Group Testing

(4 group tests +
{Group testing problem by Robert Dorfman (1943) J 3 individual tests)

Blood samples

Threshold Group Testing

(4 group tests +
{Group testing problem by Robert Dorfman (1943) J 3 individual tests)

Blood samples
4 N

Generalization by Peter Damaschke (2006):

- Positive test only if at least “u” defectives
- Negative test only if at most “|” defectives
- Random otherwise

" J
.

Threshold Group Testing

(4 group tests +
{Group testing problem by Robert Dorfman (1943) J 3 individual tests)

-~

Generalization by Peter Damaschke (2006):

- Positive test if at least “u” defectives
- Negative test if at most “I” defectives
- Random answer otherwise

"

~

)

Blood samples

Observation: Our
test is a threshold
group test!

Key idea

« Start with huge eviction set S for cache of associativity a

— partition S into a + 1 disjoint subsets T,, .. ., T_+1 of
(approximately) the same size.
— A counting argument shows leastone j € {1, ..., a+ 1} such

that S\ Tj IS still an eviction set

Improved Algorithm

In : S=candidate set, x=victim address
Out : R=minimal eviction set for x

while |S| > « do
{T1,...;Toy1} < split(S, a + 1)
141
while —~TEST(S \ T}, =) do
141+ 1
end while
S« S\T;
end while
return S

A A R

H
—

Group-testing algorithm

Start with large enough eviction set
S of size N

A —
[\

Group-testing algorithm

Split S inASSOCIATIVITY+1
subsets

A —
[\

Group-testing algorithm

In the worst case, there exists a
union of ASSOCIATIVITY subsets
being an eviction set

A —
[\

Group-testing algorithm

We can discard
N/(ASSOCIATIVITY+1) elements
per iteration

A —
[\

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many
elements

NI

‘ —
[\

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many
elements

NI

‘ —
[\

Group-testing algorithm

NI

We repeat this process until we
have ASSOCIATIVITY many
elements

—

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many
elements

NI

A —
[|

Group-testing algorithm

NI

We repeat this process until we
have ASSOCIATIVITY many
elements

—

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many
elements

NI

1 —
[\

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many
elements

NI

‘ —_

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many
elements

‘ —
[\

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many
elements

NI

A —
[\

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many
elements

A —
[\

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many
elements

N —

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many
elements

N —

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many
elements

N —

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many
elements

W =

Group-testing algorithm

We find our minimal eviction set!

ASSOCIATIVITY

l —_

Group-testing algorithm

ASSOCIATIVITY

O(N) memaccesses

Performance Evaluation

-~

O(n) vs. O(n?) advantage shows up in
practice!

Finding minimal eviction sets is

thhe set index!

practical without knowledge on any bits

~

Experiments on Skylake i5-6500 with 6MB cache (8192 sets x 12 assoc)

Numer of sets tried

/

/

400+

200+

300 1

200+

1004

600
400+

200 ~

4 Group } Baseline [l Tries until eviction set
Huge pages (y=10) A 03
Y j
A
A v A 0.2
A A
A A 0.1
A
A A
P A & A A AKX |y
50 100 150 200 250 300 350 400
4KB pages (y=6) AA 20
L 15
A
‘ ‘
o 10
AA
A‘A‘AA 5
e
: et 0
500 1000 1500 2000 2500 3000 3500 4000
2000
Limit (y=0)
1500
| timeout 1606
- - 4 500
T R
30000 40000 50000 60000 70000 80000
Set size

Y-right (lines): Average running time for eviction set reduction

Y-left (columns): Cost of finding an initial eviction set of certain size

SpuU0Dag

Conclusions

Finding minimal eviction sets is a threshold group-testing problem:
new insight for research on principled countermeasures

Novel linear-time algorithm makes attacks faster and
enables them in scenarios previously considered impractical

	Comp 590-184:�Hardware Security and Side-Channels��
	Today’s Class
	Page Mapping
	Address Translation (4KB page)
	Cache Indexing
	Quiz!
	Evict+Reload
	Attack Strategy #3: Prime+Probe
	Attack Strategy #3: Prime+Probe
	Attack Strategy #3: Prime+Probe
	Attack Strategy #3: Prime+Probe
	Eviction Sets
	Eviction Sets
	Eviction Sets
	Eviction Sets
	Attacks
	Attacks
	Attacks
	Attacks
	Problem
	Problem
	Problem
	Defintions
	Definitions
	Eviction Test
	Finding minimal eviction sets
	Finding minimal eviction sets
	Baseline Algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline Algorithm
	Baseline algorithm
	Threshold Group Testing
	Threshold Group Testing
	Threshold Group Testing
	Threshold Group Testing
	Key idea
	Improved Algorithm
	Group-testing algorithm
	Group-testing algorithm
	Group-testing algorithm
	Group-testing algorithm
	Group-testing algorithm
	Group-testing algorithm
	Group-testing algorithm
	Group-testing algorithm
	Group-testing algorithm
	Group-testing algorithm
	Group-testing algorithm
	Group-testing algorithm
	Group-testing algorithm
	Group-testing algorithm
	Group-testing algorithm
	Group-testing algorithm
	Group-testing algorithm
	Group-testing algorithm
	Group-testing algorithm
	Group-testing algorithm
	Performance Evaluation
	Conclusions
	End slide

