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Today’s Class

• How to practically build eviction sets for conducting cache 
attacks
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Page Mapping

Physical Address Space 
(limited by DRAM size)

4KB
VA

PA

Page Table per process: maps virtual to 
physical addresses

4KB

4KB

4KB

Process 1

Process 2

Virtual Address Space
(Programmer's View)



Address Translation (4KB page)

Physical Address (32bit):

Virtual Address (48bit):

48 12 11 0

Virtual page number (VPN) Page offset 
(12 bits)

31 12 11 0

Physical page number (PPN) Page offset 
(12 bits)

Page 
Table Copy

page offset

8



5

Cache Indexing



• I have a physical address:
0xAAAA

• The cache parameters are as
below

• Cache size: 32KB
• Line size/Block size: 64B
• Associativity: 8

Question 1:
What is the cache set index?

Question 2:
What is the next address that maps

to the same cache set as this one 
but not the same cache line?

Quiz!



Evict+Reload

Cache

Victim Attacker
A shared cache line

DRAM

Time

Attacker: 
Access 
a large 
buffer

Victim: 
Access

Attacker:
Reload -> LOW
latency



Attack Strategy #3: Prime+Probe

Victim Attacker

Time

DRAM

Attacker:
Prime a
cache set

Victim: 
Access

Sender’s line

Receiver’s line

# ways

Cache Set
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Eviction Sets

CACHE

SLICE 0

sets

associativity

SLICE 1

sets

Set of addresses that collide in cache:
i.e. addresses mapped into the same cache
set

associativity
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Eviction Sets

CACHE

SLICE 0

sets

associativity

SLICE 1

sets

Find addresses that collide in cache: i.e. 
addresses mapped into the same cache set

associativity

Find associativity many colliding addresses:
i.e. an eviction set



Attacks

Efficient attacks require small eviction sets



Attacks

Efficient attacks require small eviction sets

Pr ime+Probe



Attacks

Pr ime+Probe R o w h a m m e r

Efficient attacks require small eviction sets



Attacks

Pr ime+Probe R o w h a m m e r

SpectreEfficient attacks require small eviction sets



Problem

MMU

text heap stack

low high

USER PROCESS PHYSICAL MEMORY CACHE

SLICE 0

sets

SLICE 1

sets

Unknown translation from virtual to physical addresses

associativity
associativity



Problem

<script>
var foo = new Uint32Array(N);
foo[12];
...
</script>

text heap stack

low high

USER PROCESS

MMU

PHYSICAL MEMORY CACHE

SLICE 0

sets

SLICE 1

sets

In some scenarios, even unknown virtual address

associativity
associativity



Problem

<script>
var foo = new Uint32Array(N); 
foo[12];
...
</script>

text heap stack

low high

USER PROCESS PHYSICAL MEMORY CACHE

SLICE 0

sets

SLICE 1

sets

Find associativity many elements (e.g. JS
array indices) that collide in cache.

associativity
associativity



Defintions

• Two virtual address x and y are congruent if they map to 
same cache set
x ≃ y

• The equivalence class [x] of x w.r.t. ≃ is the set of all virtual 
addresses that maps to the same cache set as x

• set(·): set index bits
• pt(·): physical address
• x ≃ y iff set(pt(x))= set(pt(y))
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Definitions

Department Name 26

• We say that a set of virtual addresses S, for a cache of 
associativity a is:



Eviction Test

• av is a victim address we want to evict
• Test to see if S={a0, a1, … , an-1} is an eviction set for av

Department Name 27



• Find a large eviction set for an address V:

- Pick “enough” addresses at random

- Timing test:

Finding minimal eviction sets

1



• Find a large eviction set for an address V:

- Pick “enough” addresses at random

- Timing test:

Finding minimal eviction sets

2      Reduce initial large eviction set into its minimal core

1



Baseline Algorithm

Department Name 31



Baseline algorithm

N

S :

Start with large enough eviction set 
S of size N



Baseline algorithm

N’

S :

Pick candidate element C, and

Test if remaining set TEST(S\{C}) is 
still an eviction set



Baseline algorithm

S :

If TEST(S\{C}) = True, discard C

N’



Baseline algorithm

N’

S :

and continue with N’=N-1
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Baseline algorithm

N’

S :

Until we find an element C such 
that when removed the remaining 

set stops being an eviction set:

TEST(S\{C}) = False



Baseline algorithm

N’

S :

We learn that C is congruent 
to x



Baseline algorithm

N’

S :

We keep track of it, and insert it 
again in S
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N’

S :
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times



Baseline algorithm

Until we have identified 
ASSOCIATIVITY many elements 

representing the eviction set’s core!

N’

S :

ASSOCIATIVITY



Baseline Algorithm

Department Name 54



Baseline algorithm

O(N2)memoryaccesses

N’

S :

ASSOCIATIVITY



Threshold Group Testing

Group testing problem by Robert Dorfman (1943)

Blood samples

(10 individual tests)
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Blood samples

(4 group tests +
3 individual tests )



Threshold Group Testing

Group testing problem by Robert Dorfman (1943)

Generalization by Peter Damaschke (2006):

- Positive test only if at least “u” defectives
- Negative test only if at most “l” defectives
- Random otherwise

Blood samples

(4 group tests +
3 individual tests )



Blood samples

(4 group tests +
3 individual tests )

Threshold Group Testing

Group testing problem by Robert Dorfman (1943)

Generalization by Peter Damaschke (2006):

- Positive test if at least “u” defectives
- Negative test if at most “l” defectives
- Random answer otherwise

Observation: Our 
test is a threshold 
group test!



Key idea

• Start with huge eviction set S for cache of associativity a 
– partition S into a + 1 disjoint subsets T1, . . . , Ta+1 of 

(approximately) the same size.
– A counting argument shows least one j ∈ {1, . . . , a+ 1} such 

that S \ Tj is still an eviction set

Department Name 60



Improved Algorithm

Department Name 61



Group-testing algorithm

N

S :

Start with large enough eviction set 
S of size N



Group-testing algorithm

N

S :

Split S in ASSOCIATIVITY+1
subsets



Group-testing algorithm

N

S :

In the worst case, there exists a 
union of ASSOCIATIVITY subsets 

being an eviction set



Group-testing algorithm

N

S :

We can discard 
N/(ASSOCIATIVITY+1) elements 

per iteration
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Group-testing algorithm

We repeat this process until we 
have ASSOCIATIVITY many 

elements

N’
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Group-testing algorithm

We find our minimal eviction set!

ASSOCIATIVITY

S :



Group-testing algorithm

ASSOCIATIVITY

S :

O(N)memaccesses



O(n) vs. O(n2) advantage shows up in 
practice!

Finding minimal eviction sets is
practical without knowledge on any bits 
of the set index!

Y-right (lines):Average running time for eviction set reduction
Y-left (columns):Cost of finding an initial eviction set of certain size
X:Eviction set size in number of addresses

Experiments on Skylake i5-6500 with 6MB cache (8192 sets x 12 assoc)

timeout

Performance Evaluation



Conclusions

Finding minimal eviction sets is a threshold group-testing problem: 
new insight for research on principled countermeasures

Novel linear-time algorithm makes attacks faster and 
enables them in scenarios previously considered impractical
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