
Comp 590-184:
Hardware Security and Side-Channels

Lecture 5: Eviction Sets
January 22, 2026
Andrew Kwong

Slides adapted from Pepe Vila
(https://vwzq.net/papers/evictionsets19.pdf)

Today’s Class

• How to practically build eviction sets for conducting cache
attacks

2

Page Mapping

Physical Address Space
(limited by DRAM size)

4KB
VA

PA

Page Table per process: maps virtual to
physical addresses

4KB

4KB

4KB

Process 1

Process 2

Virtual Address Space
(Programmer's View)

Address Translation (4KB page)

Physical Address (32bit):

Virtual Address (48bit):

48 12 11 0

Virtual page number (VPN) Page offset
(12 bits)

31 12 11 0

Physical page number (PPN) Page offset
(12 bits)

Page
Table Copy

page offset

8

5

Cache Indexing

• I have a physical address:
0xAAAA

• The cache parameters are as
below

• Cache size: 32KB
• Line size/Block size: 64B
• Associativity: 8

Question 1:
What is the cache set index?

Question 2:
What is the next address that maps

to the same cache set as this one
but not the same cache line?

Quiz!

Evict+Reload

Cache

Victim Attacker
A shared cache line

DRAM

Time

Attacker:
Access
a large
buffer

Victim:
Access

Attacker:
Reload -> LOW
latency

Attack Strategy #3: Prime+Probe

Victim Attacker

Time

DRAM

Attacker:
Prime a
cache set

Victim:
Access

Sender’s line

Receiver’s line

ways

Cache Set

Attack Strategy #3: Prime+Probe

Victim Attacker

Time

DRAM

Attacker:
Prime a
cache set

Victim:
Access

Sender’s line

Receiver’s line

Attack Strategy #3: Prime+Probe

Cache

Victim Attacker

Time

DRAM

Attacker:
Prime a
cache set

Victim:
Access

Sender’s line

Receiver’s line

Attacker:
Probe ->

high latency

Attack Strategy #3: Prime+Probe

Cache

Victim Attacker

Time

DRAM

Attacker:
Prime a
cache set

Victim:
Access

Sender’s line

Receiver’s line

Attacker:
Probe ->

high latency

Eviction Sets

CACHE

SLICE 0

sets

associativity

SLICE 1

sets

Set of addresses that collide in cache:
i.e. addresses mapped into the same cache
set

associativity

Eviction Sets

CACHE

SLICE 0

sets

associativity

SLICE 1

sets

Find addresses that collide in cache: i.e.
addresses mapped into the same cache set

associativity

Eviction Sets

CACHE

SLICE 0

sets

associativity

SLICE 1

sets

Find addresses that collide in cache: i.e.
addresses mapped into the same cache set

associativity

Eviction Sets

CACHE

SLICE 0

sets

associativity

SLICE 1

sets

Find addresses that collide in cache: i.e.
addresses mapped into the same cache set

associativity

Find associativity many colliding addresses:
i.e. an eviction set

Attacks

Efficient attacks require small eviction sets

Attacks

Efficient attacks require small eviction sets

Pr ime+Probe

Attacks

Pr ime+Probe R o w h a m m e r

Efficient attacks require small eviction sets

Attacks

Pr ime+Probe R o w h a m m e r

SpectreEfficient attacks require small eviction sets

Problem

MMU

text heap stack

low high

USER PROCESS PHYSICAL MEMORY CACHE

SLICE 0

sets

SLICE 1

sets

Unknown translation from virtual to physical addresses

associativity
associativity

Problem

<script>
var foo = new Uint32Array(N);
foo[12];
...
</script>

text heap stack

low high

USER PROCESS

MMU

PHYSICAL MEMORY CACHE

SLICE 0

sets

SLICE 1

sets

In some scenarios, even unknown virtual address

associativity
associativity

Problem

<script>
var foo = new Uint32Array(N);
foo[12];
...
</script>

text heap stack

low high

USER PROCESS PHYSICAL MEMORY CACHE

SLICE 0

sets

SLICE 1

sets

Find associativity many elements (e.g. JS
array indices) that collide in cache.

associativity
associativity

Defintions

• Two virtual address x and y are congruent if they map to
same cache set
x ≃ y

• The equivalence class [x] of x w.r.t. ≃ is the set of all virtual
addresses that maps to the same cache set as x

• set(·): set index bits
• pt(·): physical address
• x ≃ y iff set(pt(x))= set(pt(y))

23

Definitions

Department Name 26

• We say that a set of virtual addresses S, for a cache of
associativity a is:

Eviction Test

• av is a victim address we want to evict
• Test to see if S={a0, a1, … , an-1} is an eviction set for av

Department Name 27

• Find a large eviction set for an address V:

- Pick “enough” addresses at random

- Timing test:

Finding minimal eviction sets

1

• Find a large eviction set for an address V:

- Pick “enough” addresses at random

- Timing test:

Finding minimal eviction sets

2 Reduce initial large eviction set into its minimal core

1

Baseline Algorithm

Department Name 31

Baseline algorithm

N

S :

Start with large enough eviction set
S of size N

Baseline algorithm

N’

S :

Pick candidate element C, and

Test if remaining set TEST(S\{C}) is
still an eviction set

Baseline algorithm

S :

If TEST(S\{C}) = True, discard C

N’

Baseline algorithm

N’

S :

and continue with N’=N-1

Baseline algorithm

N’

S :

We repeat this process several
times

Baseline algorithm

N’

S :

We repeat this process several
times

Baseline algorithm

N’

S :

We repeat this process several
times

Baseline algorithm

N’

S :

We repeat this process several
times

Baseline algorithm

N’

S :

Until we find an element C such
that when removed the remaining

set stops being an eviction set:

TEST(S\{C}) = False

Baseline algorithm

N’

S :

We learn that C is congruent
to x

Baseline algorithm

N’

S :

We keep track of it, and insert it
again in S

Baseline algorithm

N’

S :

We repeat this process several
times

Baseline algorithm

N’

S :

We repeat this process several
times

Baseline algorithm

N’

S :

We repeat this process several
times

Baseline algorithm

N’

S :

We repeat this process several
times

Baseline algorithm

N’

S :

We repeat this process several
times

Baseline algorithm

N’

S :

We repeat this process several
times

Baseline algorithm

N’

S :

We repeat this process several
times

Baseline algorithm

N’

S :

We repeat this process several
times

Baseline algorithm

N’

S :

We repeat this process several
times

Baseline algorithm

N’

S :

We repeat this process several
times

Baseline algorithm

Until we have identified
ASSOCIATIVITY many elements

representing the eviction set’s core!

N’

S :

ASSOCIATIVITY

Baseline Algorithm

Department Name 54

Baseline algorithm

O(N2)memoryaccesses

N’

S :

ASSOCIATIVITY

Threshold Group Testing

Group testing problem by Robert Dorfman (1943)

Blood samples

(10 individual tests)

Threshold Group Testing

Group testing problem by Robert Dorfman (1943)

Blood samples

(4 group tests +
3 individual tests)

Threshold Group Testing

Group testing problem by Robert Dorfman (1943)

Generalization by Peter Damaschke (2006):

- Positive test only if at least “u” defectives
- Negative test only if at most “l” defectives
- Random otherwise

Blood samples

(4 group tests +
3 individual tests)

Blood samples

(4 group tests +
3 individual tests)

Threshold Group Testing

Group testing problem by Robert Dorfman (1943)

Generalization by Peter Damaschke (2006):

- Positive test if at least “u” defectives
- Negative test if at most “l” defectives
- Random answer otherwise

Observation: Our
test is a threshold
group test!

Key idea

• Start with huge eviction set S for cache of associativity a
– partition S into a + 1 disjoint subsets T1, . . . , Ta+1 of

(approximately) the same size.
– A counting argument shows least one j ∈ {1, . . . , a+ 1} such

that S \ Tj is still an eviction set

Department Name 60

Improved Algorithm

Department Name 61

Group-testing algorithm

N

S :

Start with large enough eviction set
S of size N

Group-testing algorithm

N

S :

Split S in ASSOCIATIVITY+1
subsets

Group-testing algorithm

N

S :

In the worst case, there exists a
union of ASSOCIATIVITY subsets

being an eviction set

Group-testing algorithm

N

S :

We can discard
N/(ASSOCIATIVITY+1) elements

per iteration

Group-testing algorithm

N’

S :

We repeat this process until we
have ASSOCIATIVITY many

elements

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many

elements

N’

S :

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many

elements

N’

S :

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many

elements

N’

S :

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many

elements

N’

S :

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many

elements

N’

S :

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many

elements

N’

S :

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many

elements

N’

S :

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many

elements

N’

S :

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many

elements

N’

S :

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many

elements

N’

S :

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many

elements

N’

S :

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many

elements

N’

S :

Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many

elements

N’

S :

Group-testing algorithm

We find our minimal eviction set!

ASSOCIATIVITY

S :

Group-testing algorithm

ASSOCIATIVITY

S :

O(N)memaccesses

O(n) vs. O(n2) advantage shows up in
practice!

Finding minimal eviction sets is
practical without knowledge on any bits
of the set index!

Y-right (lines):Average running time for eviction set reduction
Y-left (columns):Cost of finding an initial eviction set of certain size
X:Eviction set size in number of addresses

Experiments on Skylake i5-6500 with 6MB cache (8192 sets x 12 assoc)

timeout

Performance Evaluation

Conclusions

Finding minimal eviction sets is a threshold group-testing problem:
new insight for research on principled countermeasures

Novel linear-time algorithm makes attacks faster and
enables them in scenarios previously considered impractical

	Comp 590-184:�Hardware Security and Side-Channels��
	Today’s Class
	Page Mapping
	Address Translation (4KB page)
	Cache Indexing
	Quiz!
	Evict+Reload
	Attack Strategy #3: Prime+Probe
	Attack Strategy #3: Prime+Probe
	Attack Strategy #3: Prime+Probe
	Attack Strategy #3: Prime+Probe
	Eviction Sets
	Eviction Sets
	Eviction Sets
	Eviction Sets
	Attacks
	Attacks
	Attacks
	Attacks
	Problem
	Problem
	Problem
	Defintions
	Definitions
	Eviction Test
	Finding minimal eviction sets
	Finding minimal eviction sets
	Baseline Algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline algorithm
	Baseline Algorithm
	Baseline algorithm
	Threshold Group Testing
	Threshold Group Testing
	Threshold Group Testing
	Threshold Group Testing
	Key idea
	Improved Algorithm
	Group-testing algorithm
	Group-testing algorithm
	Group-testing algorithm
	Group-testing algorithm
	Group-testing algorithm
	Group-testing algorithm
	Group-testing algorithm
	Group-testing algorithm
	Group-testing algorithm
	Group-testing algorithm
	Group-testing algorithm
	Group-testing algorithm
	Group-testing algorithm
	Group-testing algorithm
	Group-testing algorithm
	Group-testing algorithm
	Group-testing algorithm
	Group-testing algorithm
	Group-testing algorithm
	Group-testing algorithm
	Performance Evaluation
	Conclusions
	End slide

