

Comp 590-184: Hardware Security and Side-Channels

Lecture 5: Eviction Sets

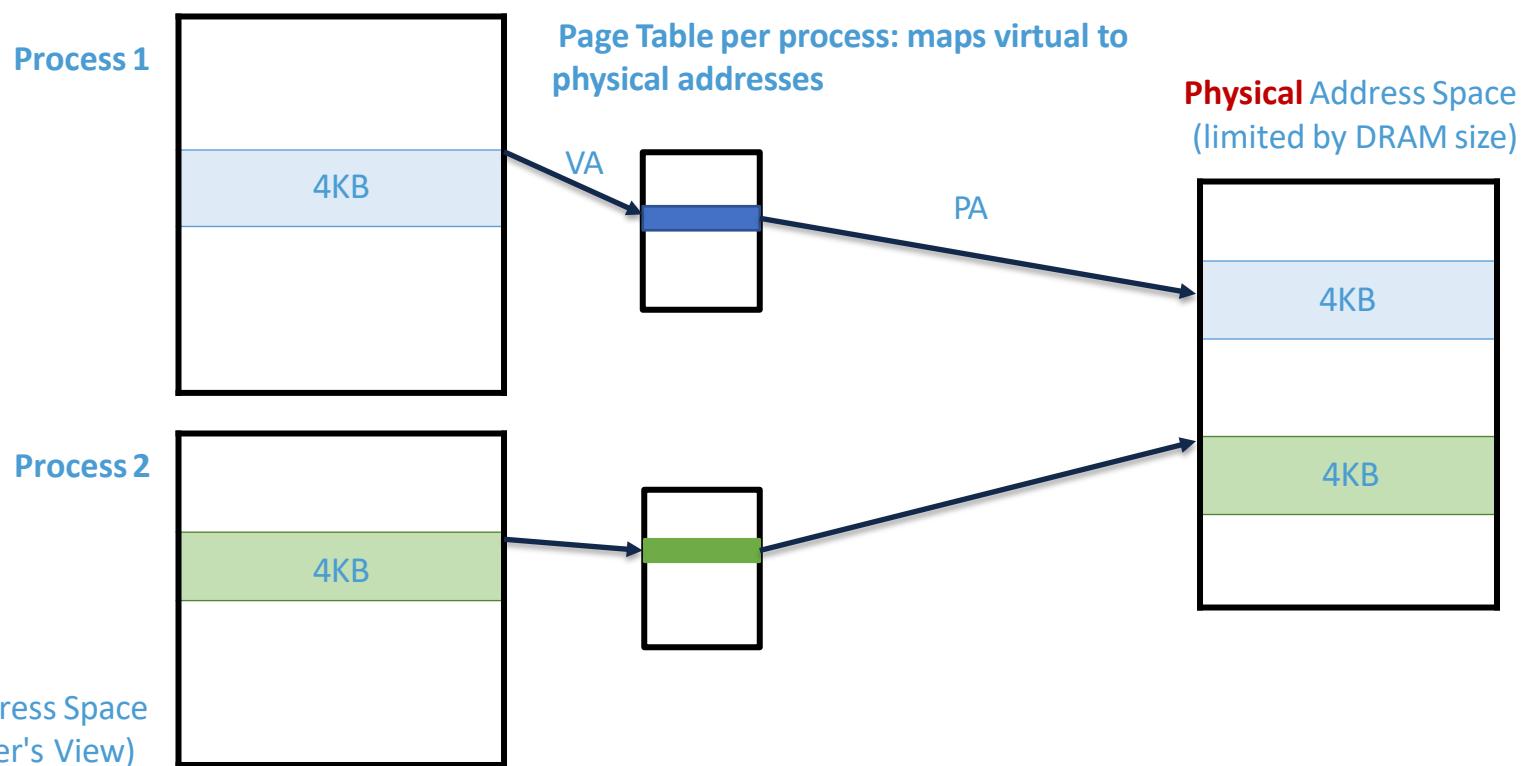
January 22, 2026
Andrew Kwong

Slides adapted from Pepe Vila
(<https://vwzq.net/papers/evictionsets19.pdf>)

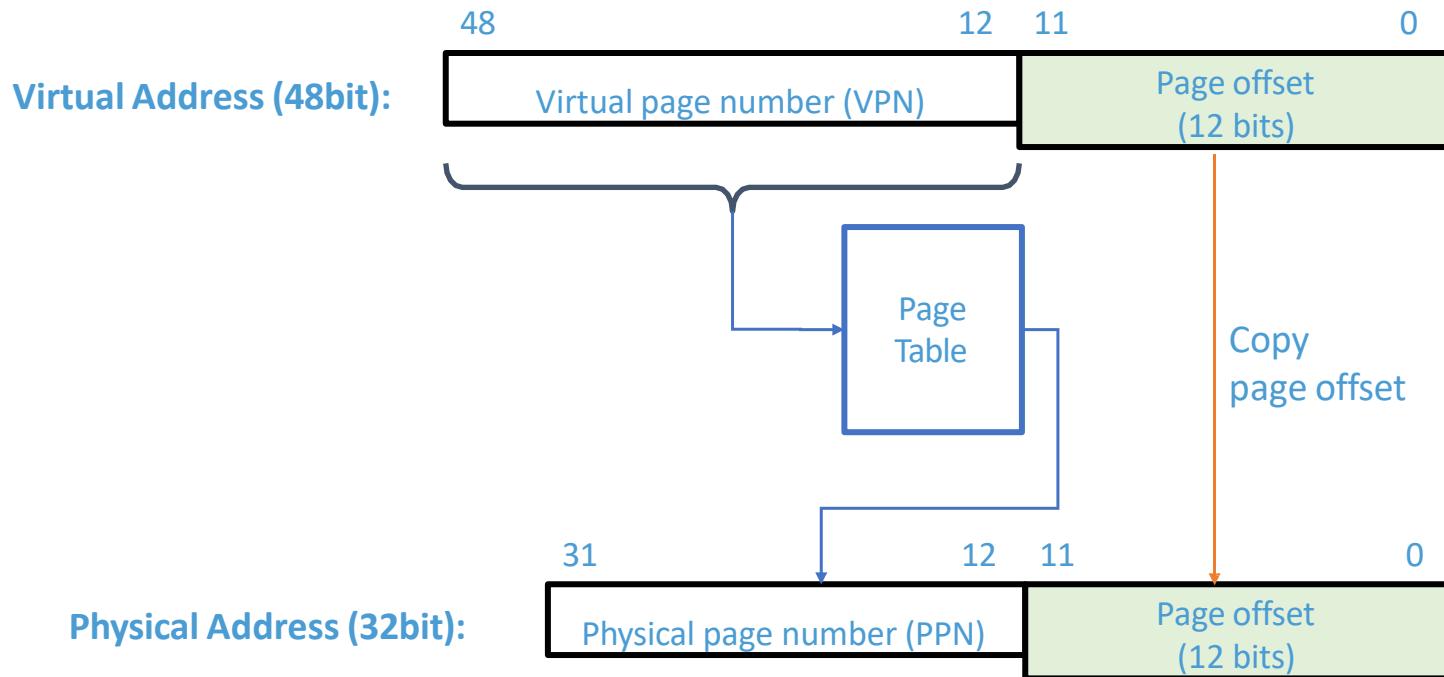
Today's Class

- How to practically build eviction sets for conducting cache attacks

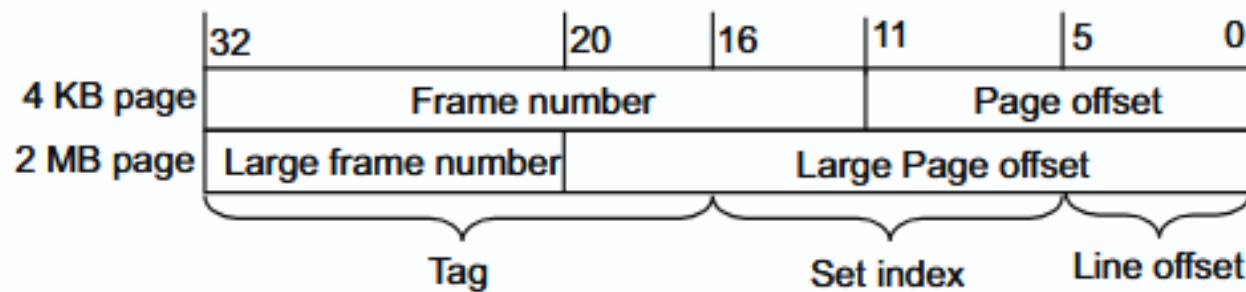
Page Mapping



Address Translation (4KB page)



Cache Indexing



Quiz!

- I have a physical address:
0xAAAA
- The cache parameters are as below
 - Cache size: 32KB
 - Line size/Block size: 64B
 - Associativity: 8

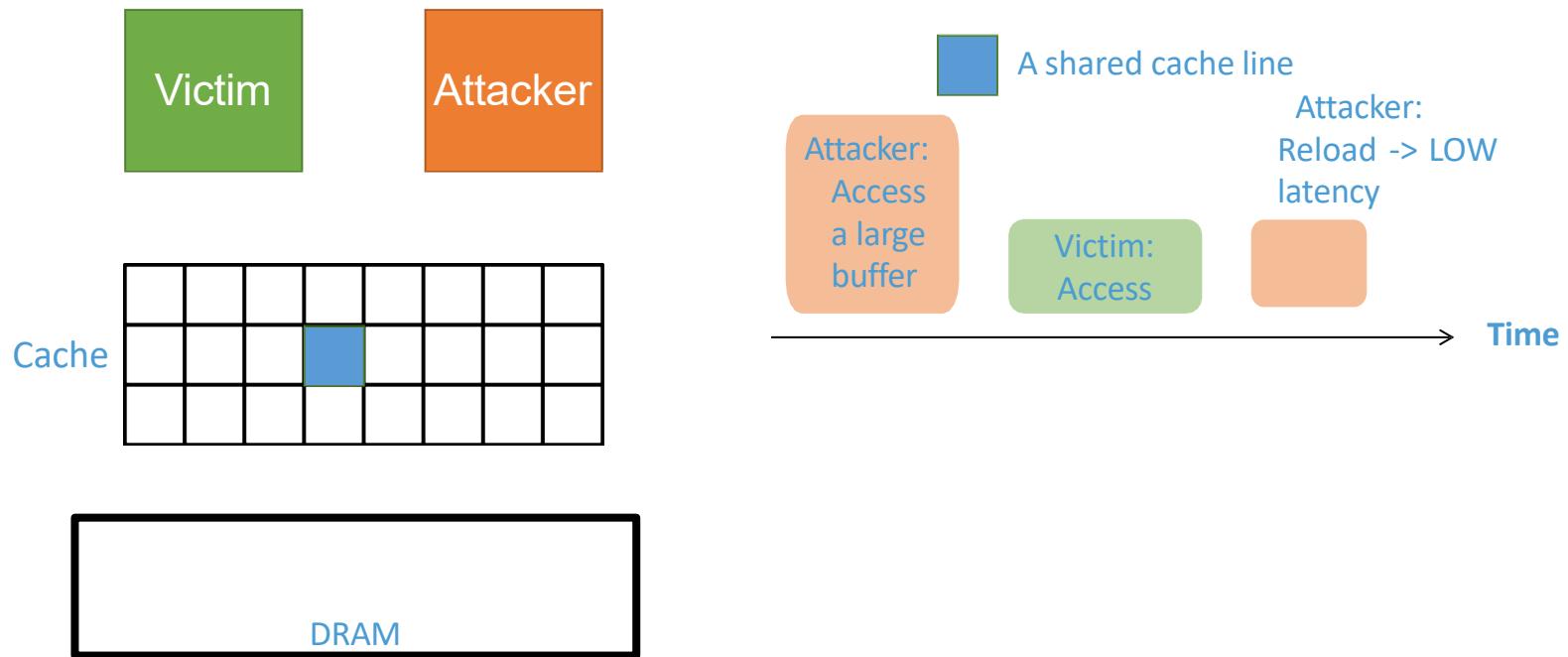
Question 1:

What is the cache set index?

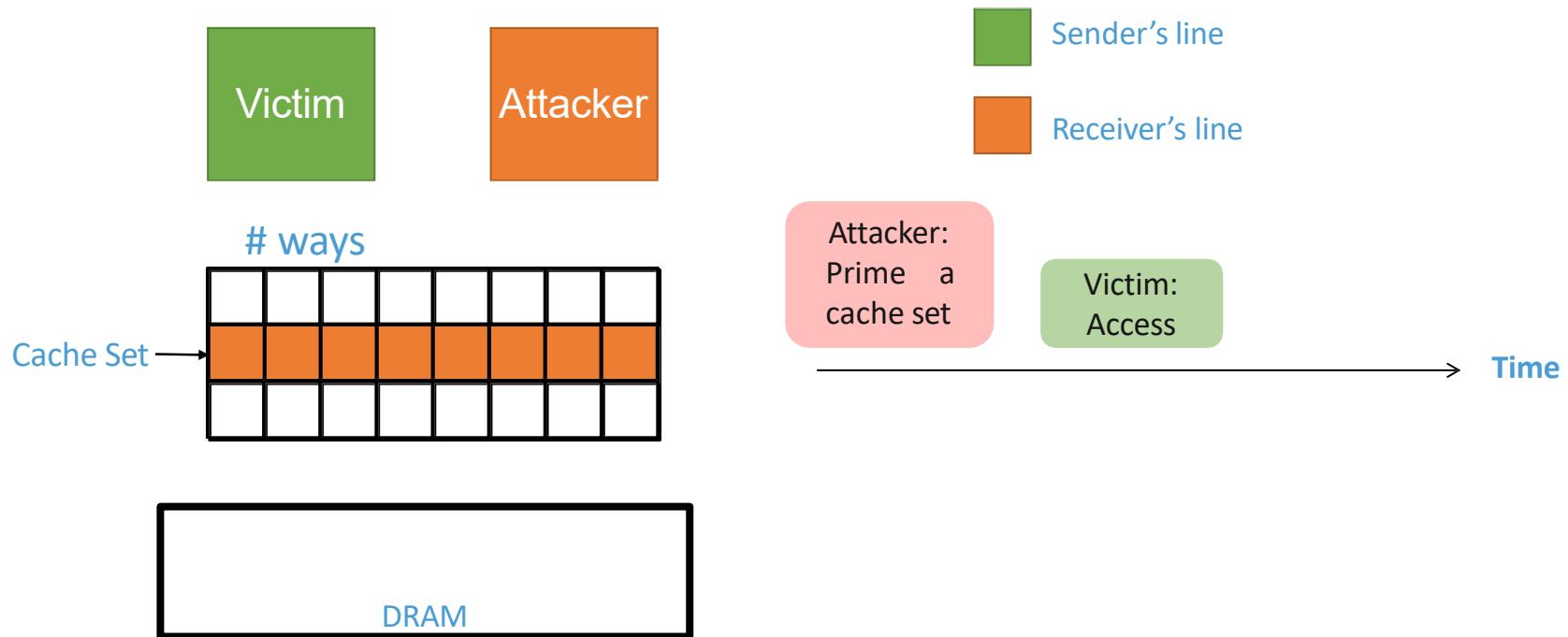
Question 2:

What is the next address that maps to the same cache set as this one but not the same cache line?

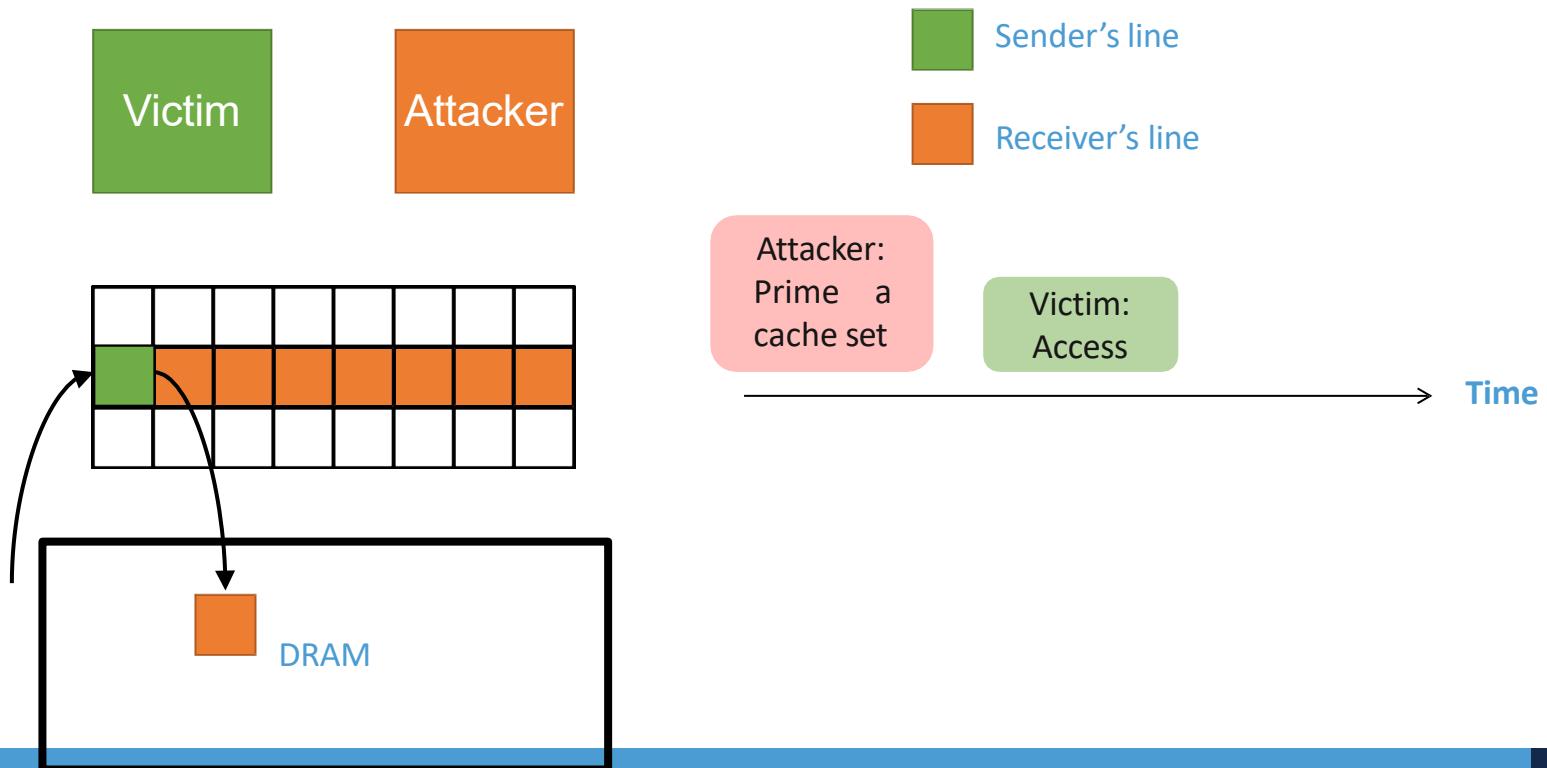
Evict+Reload



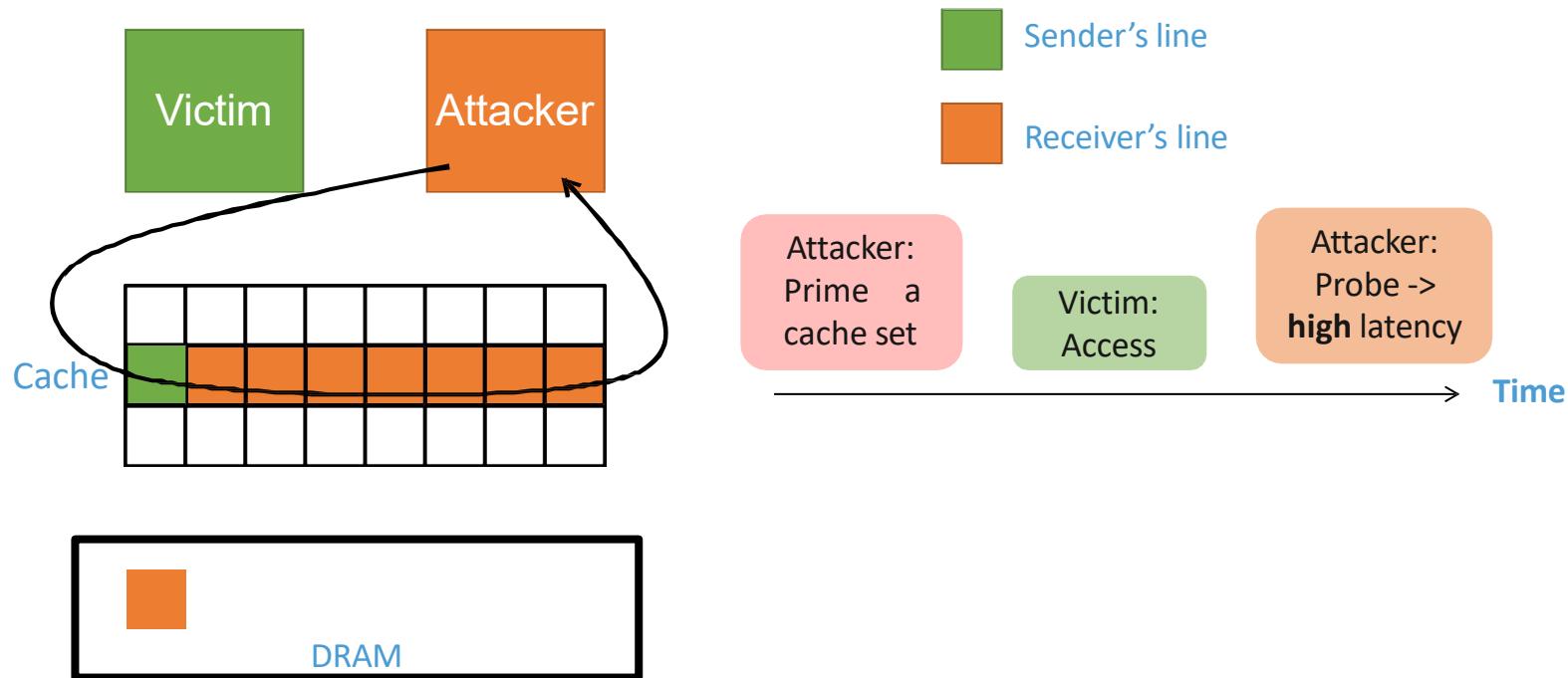
Attack Strategy #3: Prime+Probe



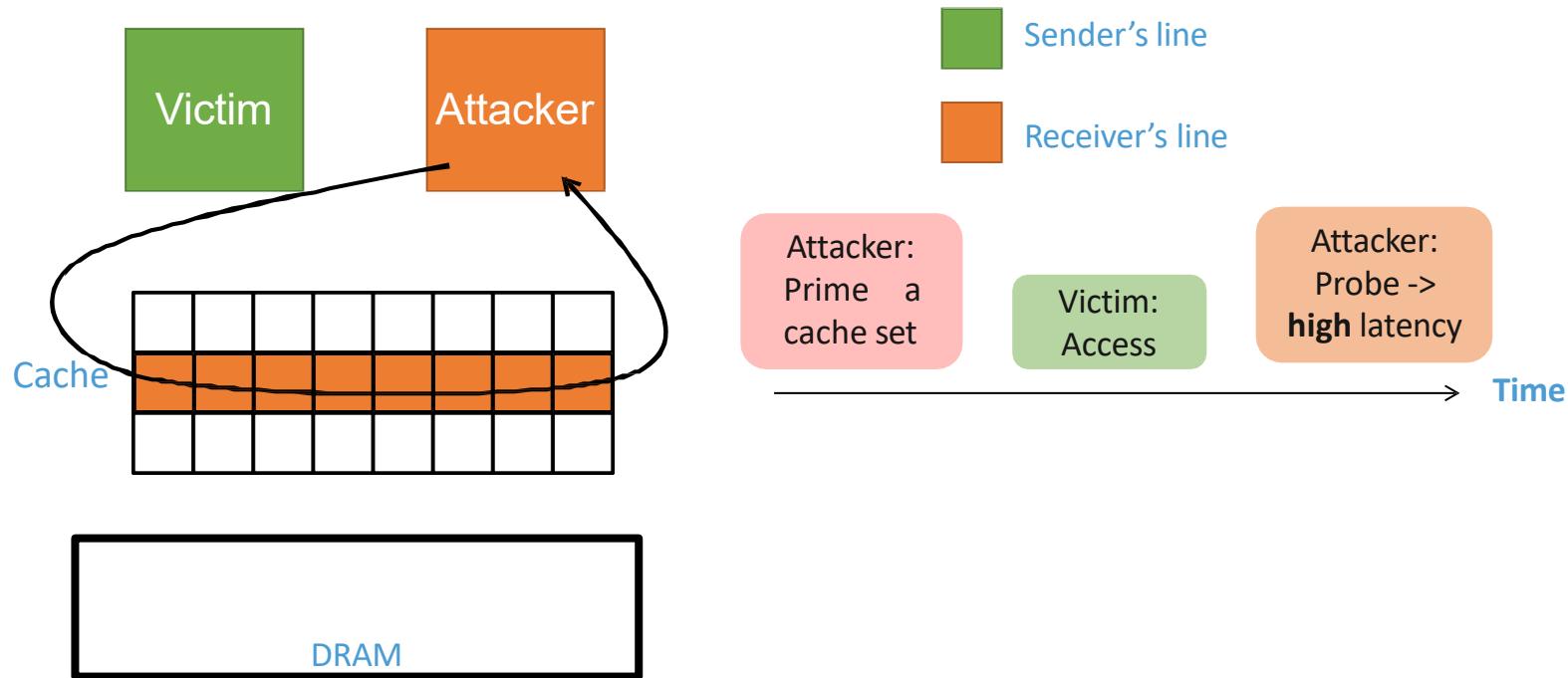
Attack Strategy #3: Prime+Probe



Attack Strategy #3: Prime+Probe

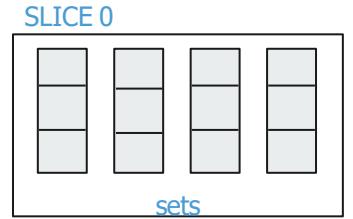


Attack Strategy #3: Prime+Probe

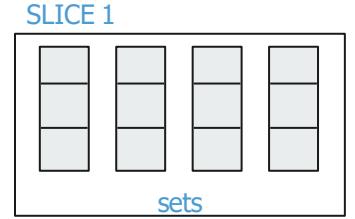


Eviction Sets

Set of addresses that collide in cache:
i.e. addresses mapped into the same cache set



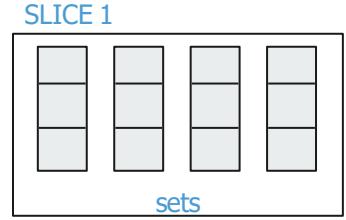
associativity



associativity

Eviction Sets

Find addresses that collide in cache: i.e.
addresses mapped into the same cache set

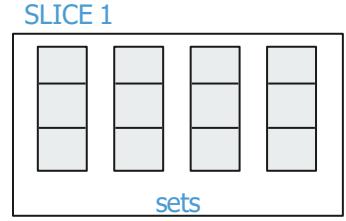


associativity

associativity

Eviction Sets

Find addresses that collide in cache: i.e.
addresses mapped into the same cache set



associativity

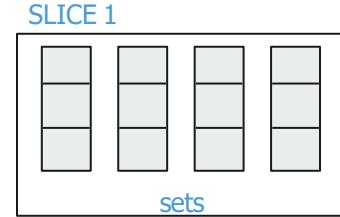
associativity

Eviction Sets

Find addresses that collide in cache: i.e. addresses mapped into the same cache set

Find associativity many colliding addresses: i.e. an **eviction set**

associativity



associativity

Attacks

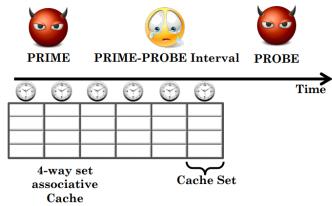
Efficient attacks require small eviction sets

Attacks

Efficient attacks require small eviction sets

Prime+Probe

Prime+Probe Attacks

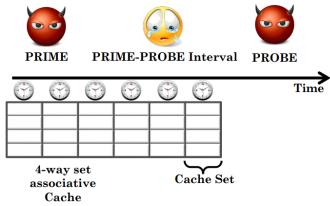


Attacks

Efficient attacks require small eviction sets

Prime+Probe

Prime+Probe Attacks



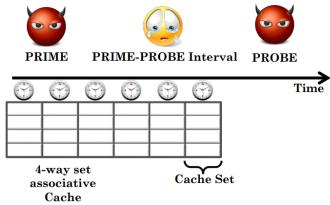
Rowhammer

Attacks

Efficient attacks require small eviction sets

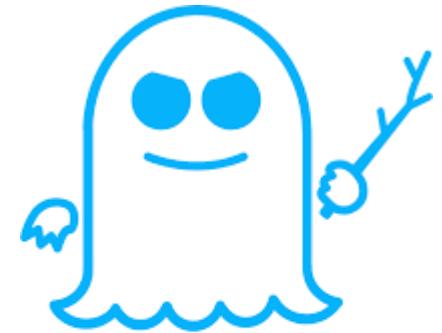
Prime+Probe

Prime+Probe Attacks



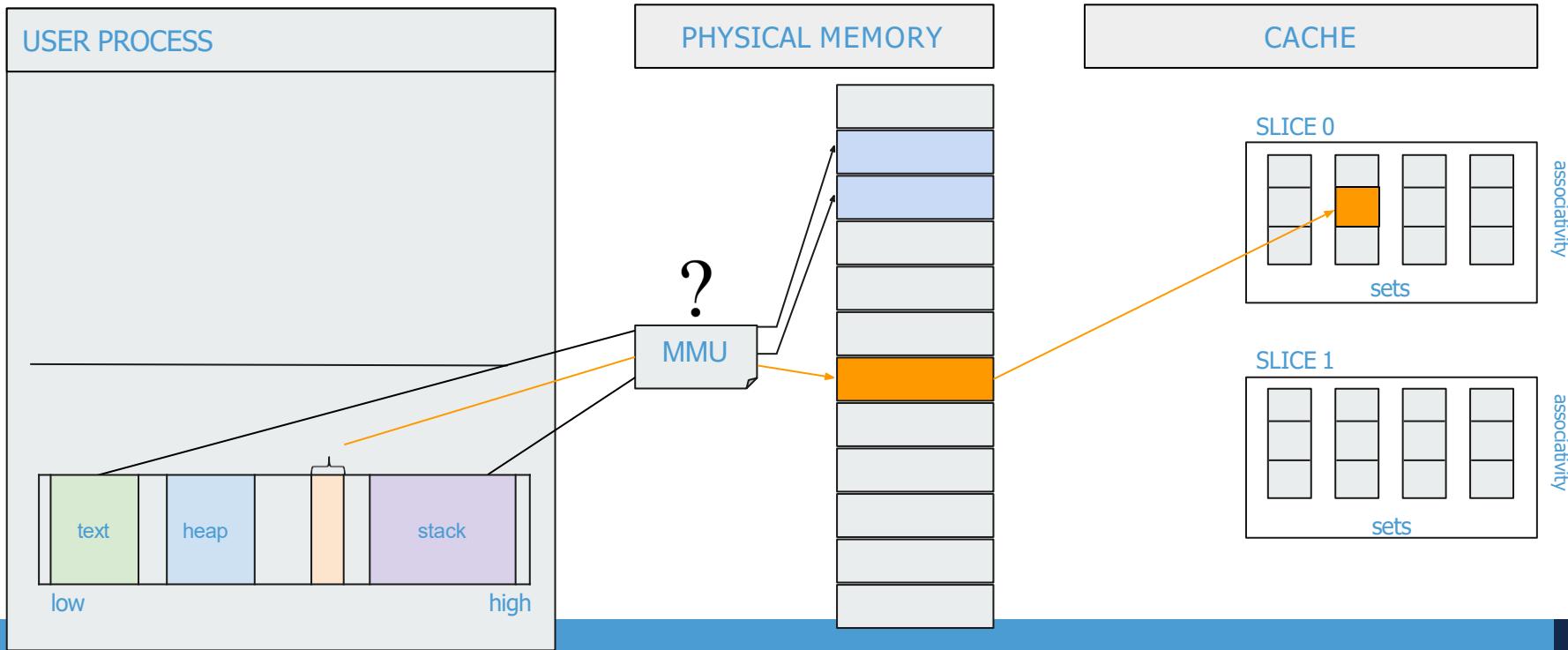
Rowhammer

Spectre



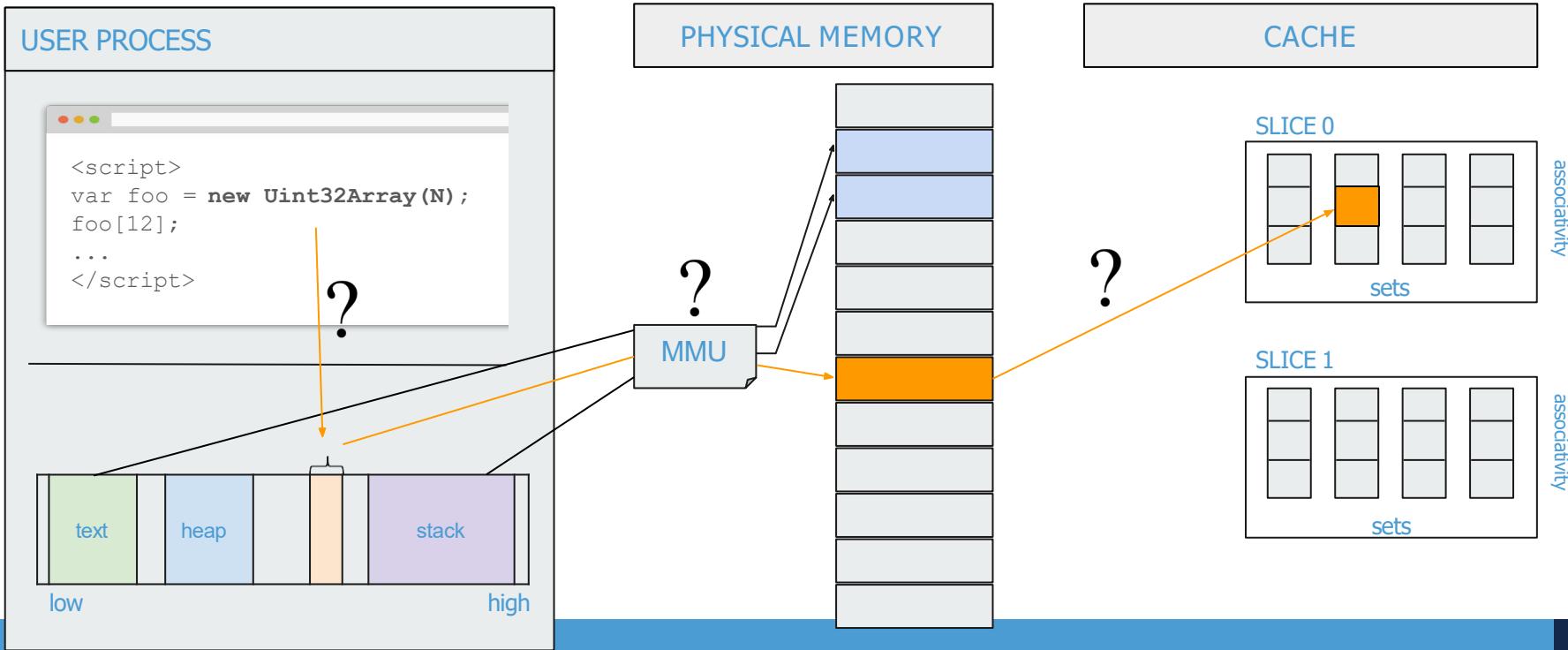
Problem

Unknown translation from virtual to physical addresses

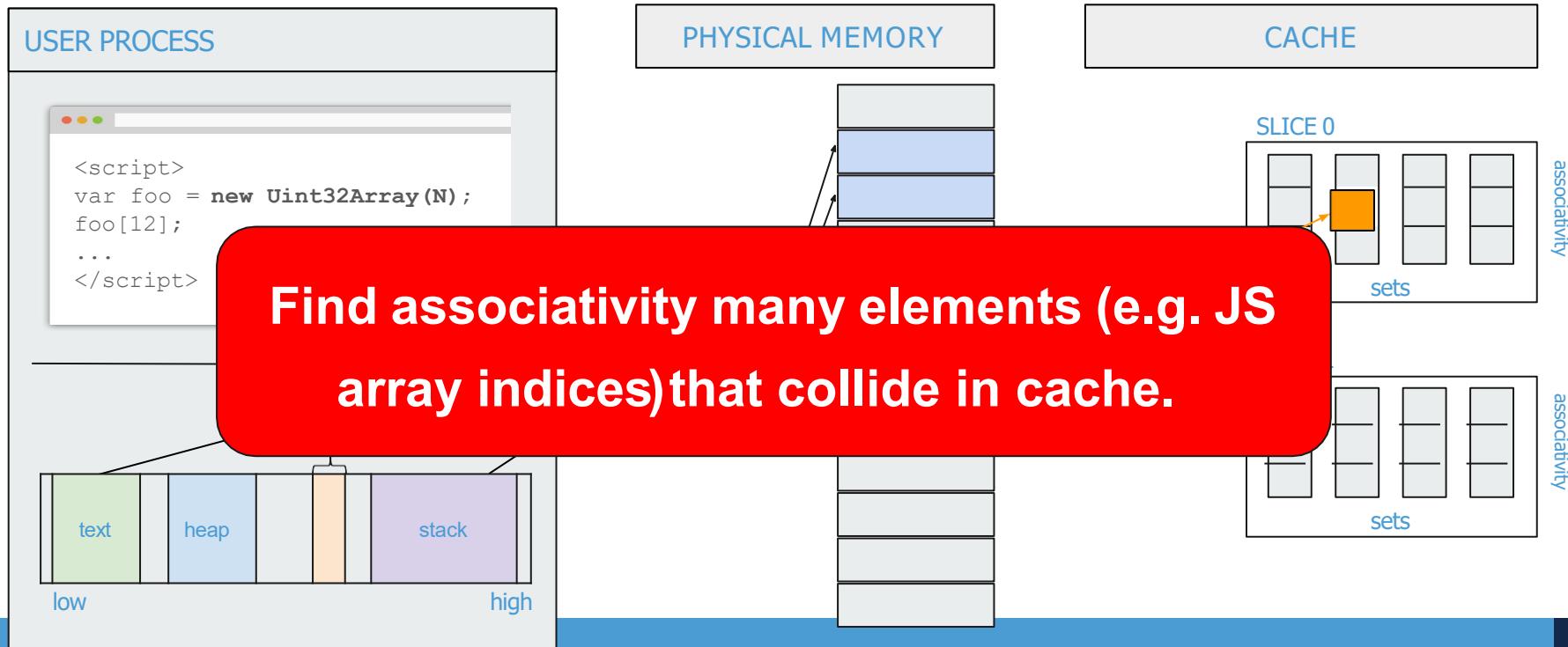


Problem

In some scenarios, even unknown virtual address



Problem



Definitions

- Two virtual address x and y are congruent if they map to same cache set
$$x \simeq y$$
- *The equivalence class $[x]$ of x w.r.t. \simeq is the set of all virtual addresses that maps to the same cache set as x*
- $\text{set}(\cdot)$: set index bits
- $\text{pt}(\cdot)$: physical address
- $x \simeq y \text{ iff } \text{set}(\text{pt}(x)) = \text{set}(\text{pt}(y))$

Definitions

- We say that a set of virtual addresses S , for a cache of associativity a is:
 - an *eviction set for x* if $x \notin S$ and at least a addresses in S map to the same cache set as x :

$$|[x] \cap S| \geq a$$

Eviction Test

- a_v is a *victim address* we want to evict
- Test to see if $S=\{a_0, a_1, \dots, a_{n-1}\}$ is an eviction set for a_v

$a_v \ a_0 \ a_1 \ \dots \ a_n \ a_v^{\heartsuit}$

Finding minimal eviction sets

1

- Find a large eviction set for an address V :

- Pick “enough” addresses at random

$a_v \ a_0 \ a_1 \dots a_n \ a_v^{\circlearrowleft}$

- Timing test:

Finding minimal eviction sets

1

- Find a large eviction set for an address V :
 - Pick “enough” addresses at random

$a_v \ a_0 \ a_1 \ \dots \ a_n \ a_v^{\text{?}}$

- Timing test:

2

Reduce initial large eviction set into its minimal core

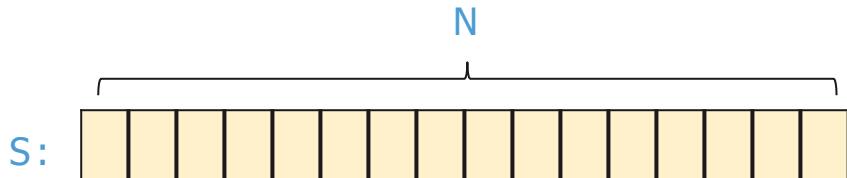
Baseline Algorithm

In: S =candidate set, x =victim address

Out: R =minimal eviction set for v

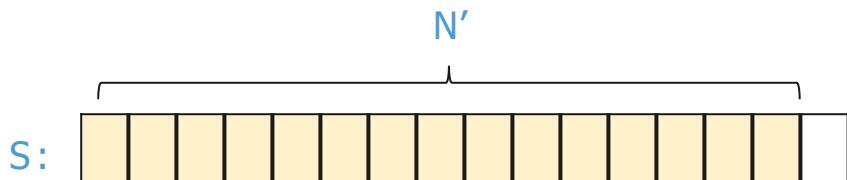
```
1:  $R \leftarrow \{\}$ 
2: while  $|R| < a$  do
3:    $c \leftarrow \text{pick}(S)$ 
4:   if  $\neg\text{TEST}(R \cup (S \setminus \{c\}), x)$  then
5:      $R \leftarrow R \cup \{c\}$ 
6:   end if
7:    $S \leftarrow S \setminus \{c\}$ 
8: end while
9: return  $R$ 
```

Baseline algorithm



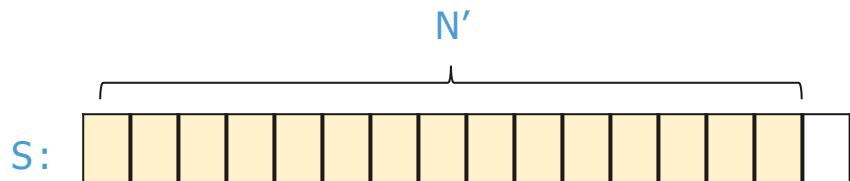
Start with large enough eviction set
 S of size N

Baseline algorithm



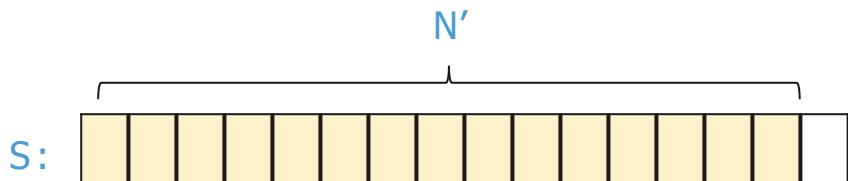
Pick candidate element C , and
Test if remaining set $TEST(S \setminus \{C\})$ is
still an eviction set

Baseline algorithm



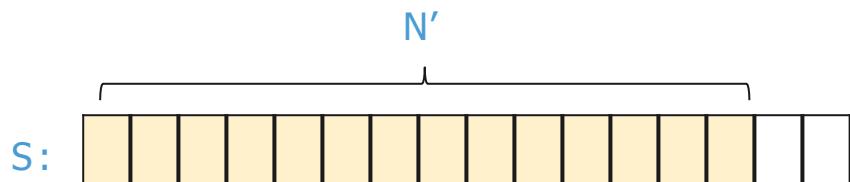
If $\text{TEST}(S \setminus \{C\}) = \text{True}$, discard C

Baseline algorithm



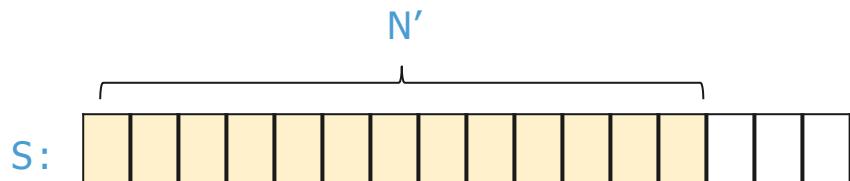
and continue with $N'=N-1$

Baseline algorithm



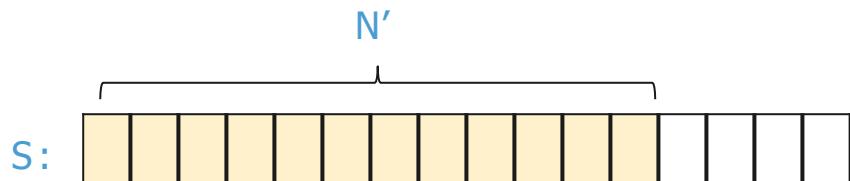
We repeat this process several times

Baseline algorithm



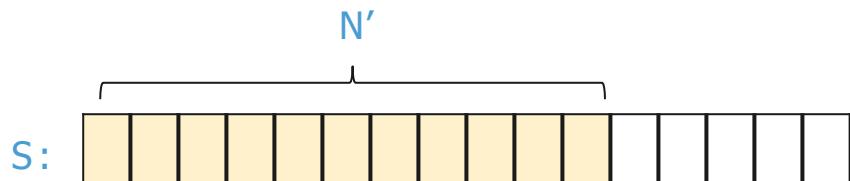
We repeat this process several times

Baseline algorithm



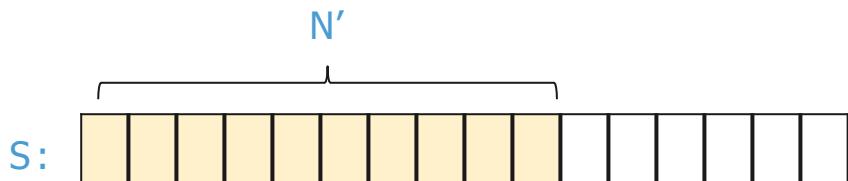
We repeat this process several times

Baseline algorithm



We repeat this process several times

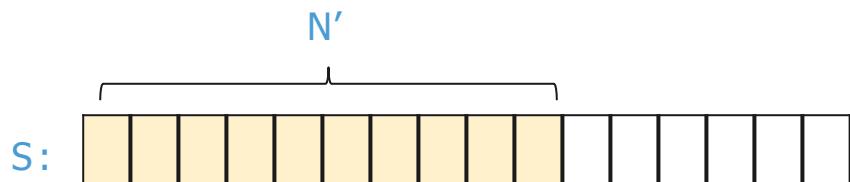
Baseline algorithm



Until we find an element C such that when removed the remaining set stops being an eviction set:

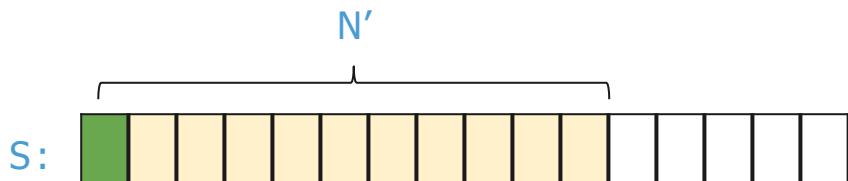
$\text{TEST}(S \setminus \{C\}) = \text{False}$

Baseline algorithm



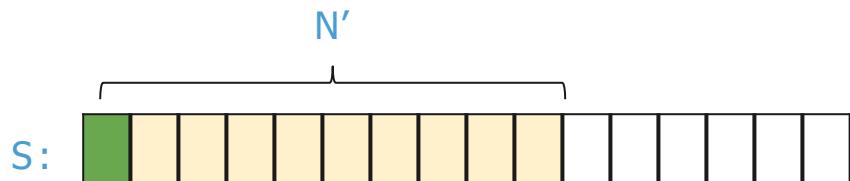
We learn that C is congruent
to x

Baseline algorithm



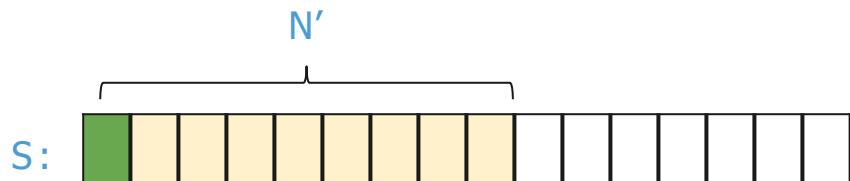
We keep track of it, and insert it again in S

Baseline algorithm



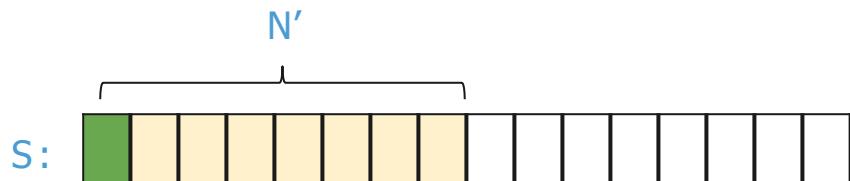
We repeat this process several times

Baseline algorithm



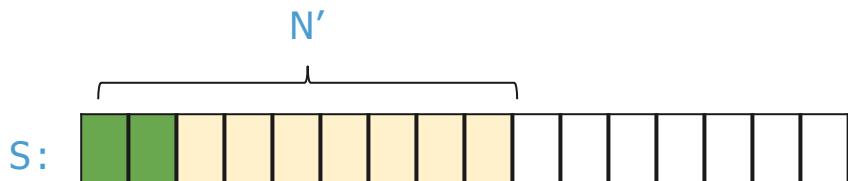
We repeat this process several times

Baseline algorithm



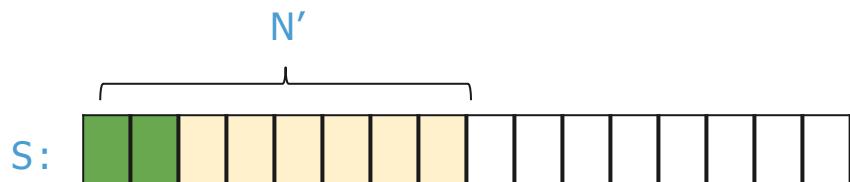
We repeat this process several times

Baseline algorithm



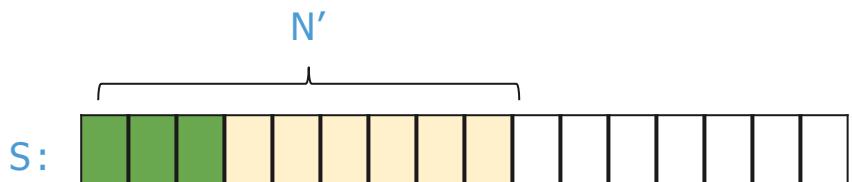
We repeat this process several times

Baseline algorithm



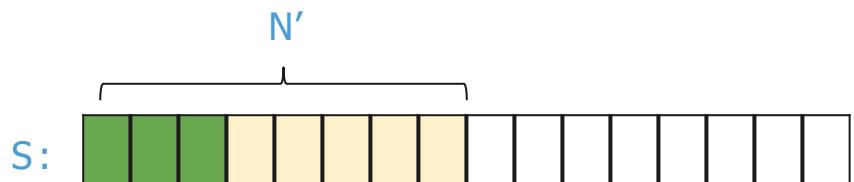
We repeat this process several times

Baseline algorithm



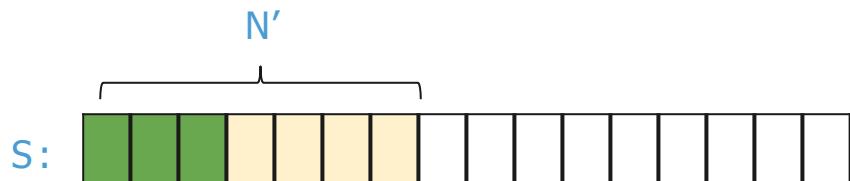
We repeat this process several times

Baseline algorithm



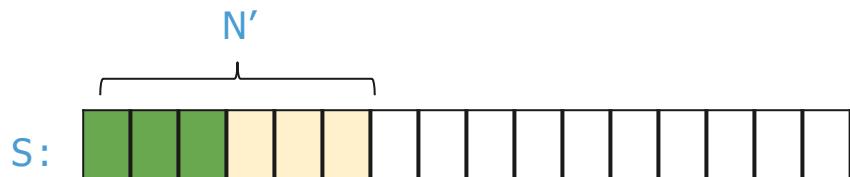
We repeat this process several times

Baseline algorithm



We repeat this process several times

Baseline algorithm

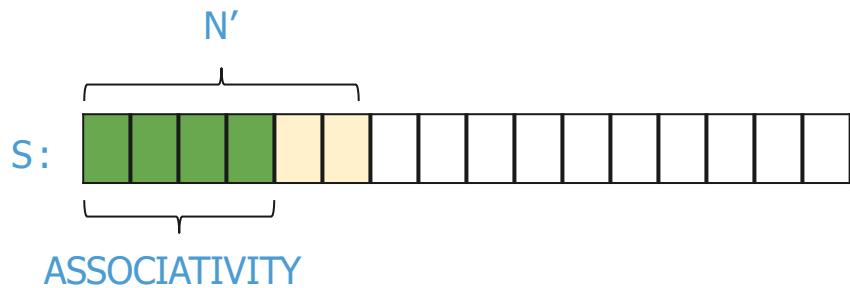


We repeat this process several times

Baseline algorithm

We repeat this process several times

Baseline algorithm



Until we have identified
ASSOCIATIVITY many elements
representing the eviction set's core!

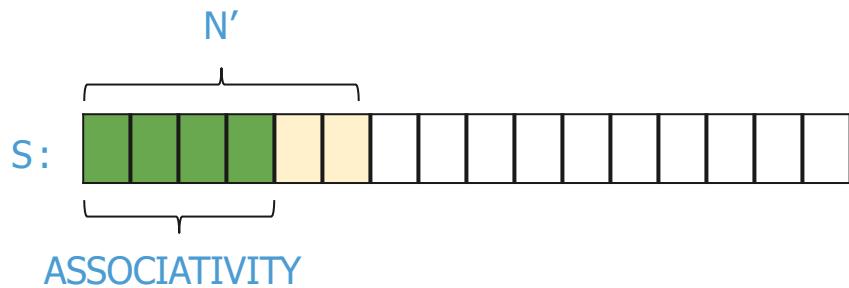
Baseline Algorithm

In: S =candidate set, x =victim address

Out: R =minimal eviction set for v

```
1:  $R \leftarrow \{\}$ 
2: while  $|R| < a$  do
3:    $c \leftarrow \text{pick}(S)$ 
4:   if  $\neg\text{TEST}(R \cup (S \setminus \{c\}), x)$  then
5:      $R \leftarrow R \cup \{c\}$ 
6:   end if
7:    $S \leftarrow S \setminus \{c\}$ 
8: end while
9: return  $R$ 
```

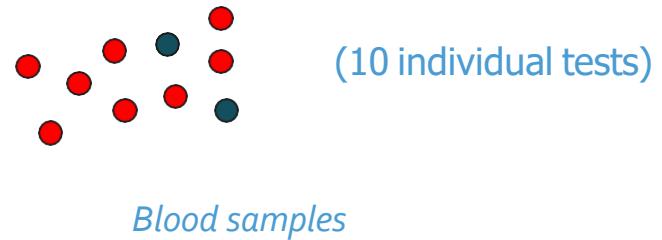
Baseline algorithm



$O(N^2)$ memory accesses

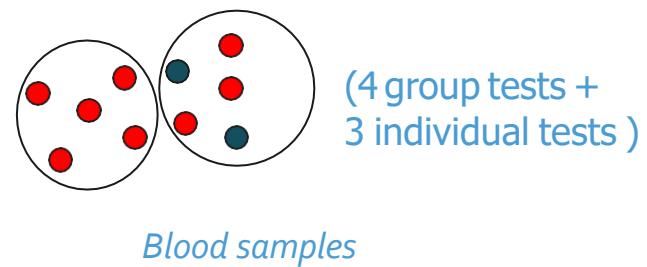
Threshold Group Testing

Group testing problem by Robert Dorfman (1943)



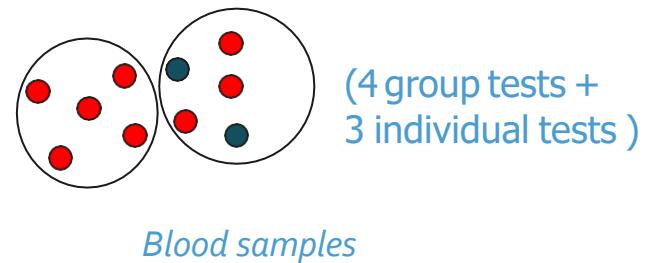
Threshold Group Testing

Group testing problem by Robert Dorfman (1943)



Threshold Group Testing

Group testing problem by Robert Dorfman (1943)

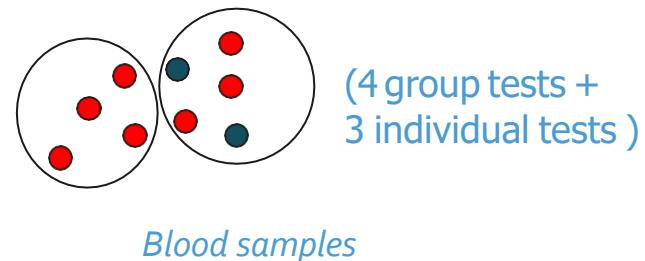


Generalization by Peter Damaschke (2006):

- Positive test only if at least “u” defectives
- Negative test only if at most “l” defectives
- Random otherwise

Threshold Group Testing

Group testing problem by Robert Dorfman (1943)



Generalization by Peter Damaschke (2006):

- Positive test if at least “u” defectives
- Negative test if at most “l” defectives
- Random answer otherwise

Observation: Our test is a threshold group test!

Key idea

- Start with huge eviction set S for cache of associativity a
 - partition S into $a + 1$ disjoint subsets T_1, \dots, T_{a+1} of (approximately) the same size.
 - A counting argument shows least one $j \in \{1, \dots, a+1\}$ such that $S \setminus T_j$ is still an eviction set

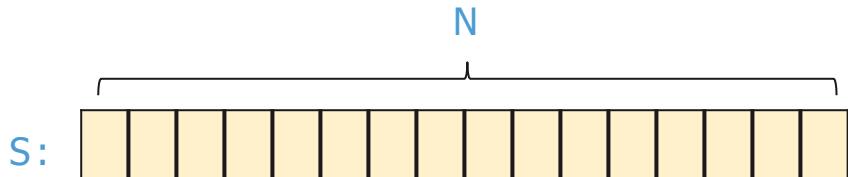
Improved Algorithm

In : S =candidate set, x =victim address

Out : R =minimal eviction set for x

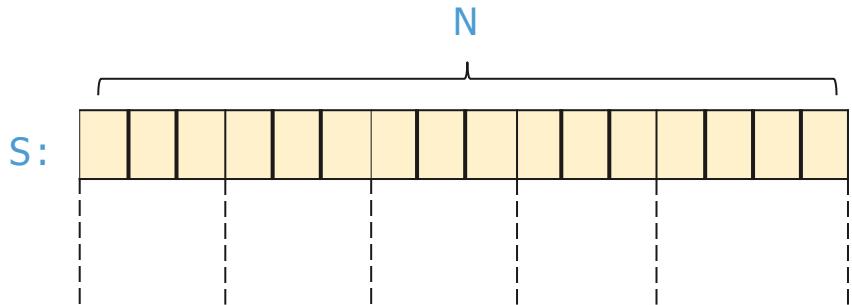
```
1: while  $|S| > a$  do
2:    $\{T_1, \dots, T_{a+1}\} \leftarrow split(S, a + 1)$ 
3:    $i \leftarrow 1$ 
4:   while  $\neg \text{TEST}(S \setminus T_i, x)$  do
5:      $i \leftarrow i + 1$ 
6:   end while
7:    $S \leftarrow S \setminus T_i$ 
8: end while
9: return  $S$ 
```

Group-testing algorithm



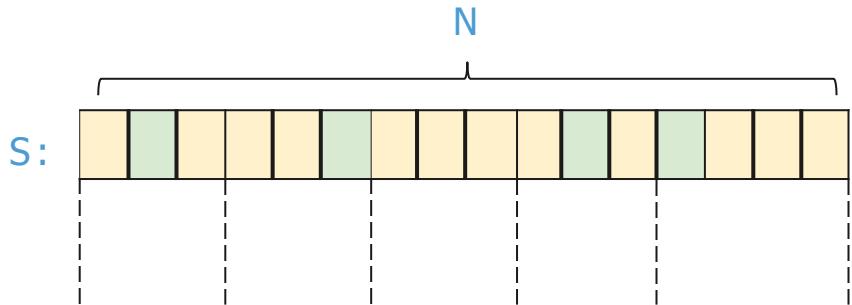
Start with large enough eviction set
 S of size N

Group-testing algorithm



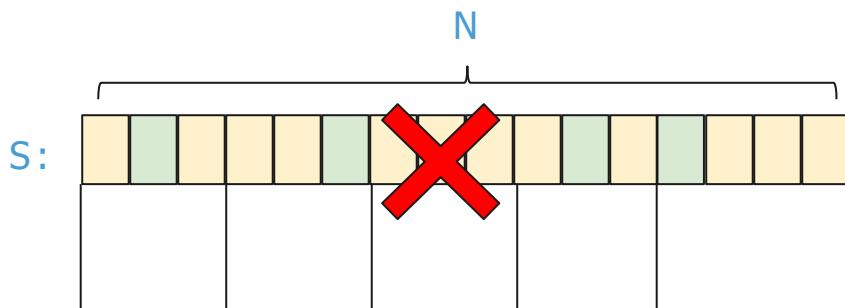
Split S in ASSOCIATIVITY+1
subsets

Group-testing algorithm



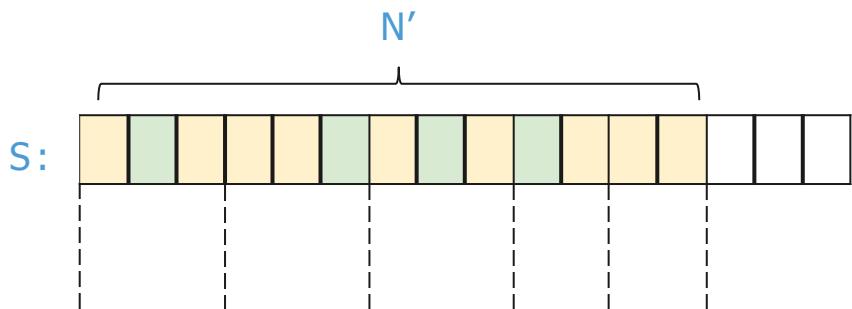
In the worst case, there exists a union of ASSOCIATIVITY subsets being an eviction set

Group-testing algorithm



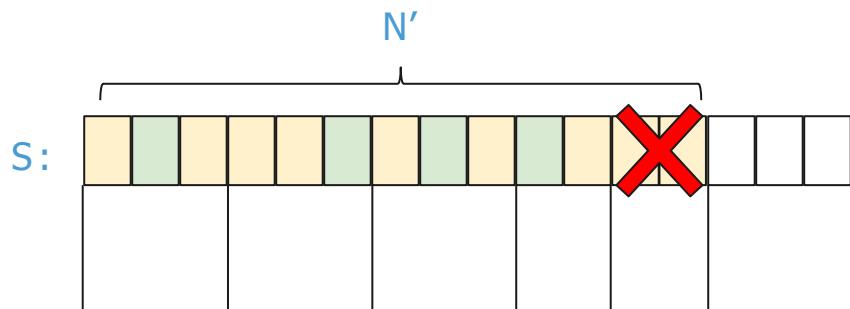
We can discard
 $N/(\text{ASSOCIATIVITY}+1)$ elements
per iteration

Group-testing algorithm



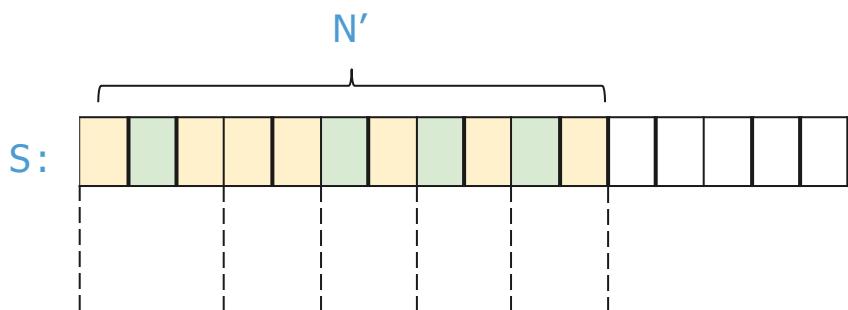
We repeat this process until we have ASSOCIATIVITY many elements

Group-testing algorithm



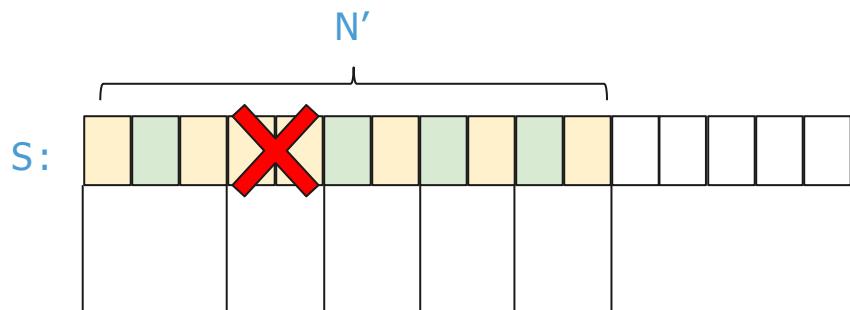
We repeat this process until we have ASSOCIATIVITY many elements

Group-testing algorithm



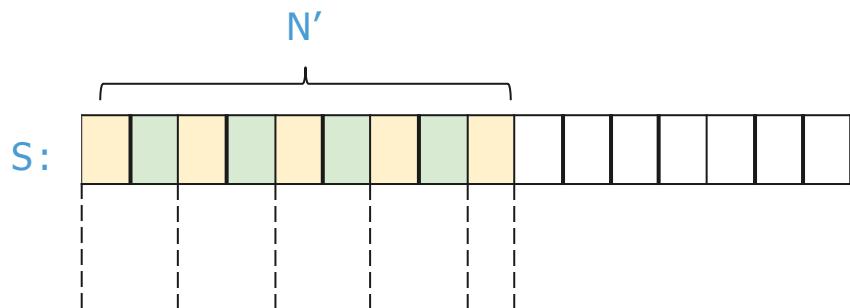
We repeat this process until we have ASSOCIATIVITY many elements

Group-testing algorithm



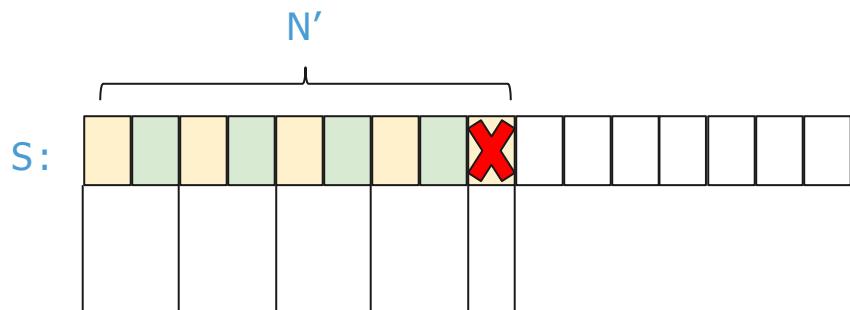
We repeat this process until we have ASSOCIATIVITY many elements

Group-testing algorithm



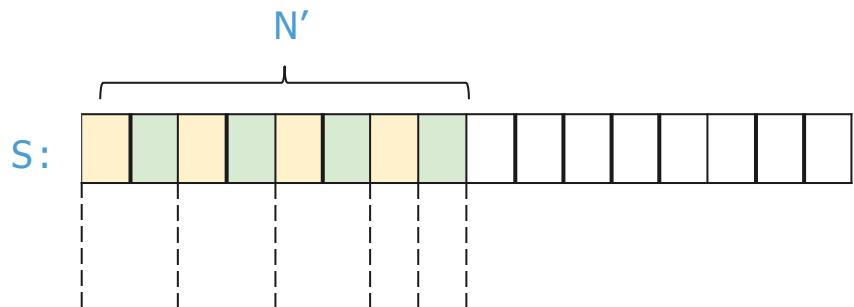
We repeat this process until we have ASSOCIATIVITY many elements

Group-testing algorithm



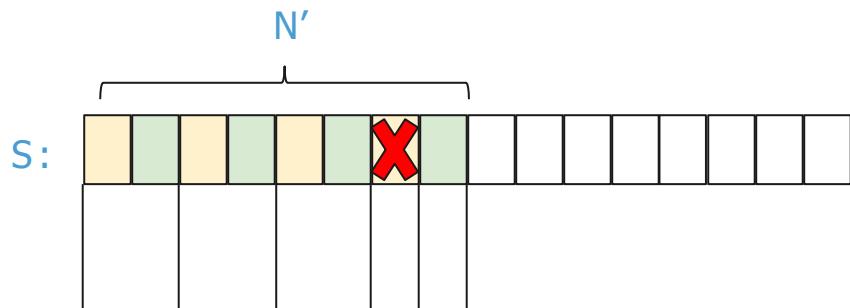
We repeat this process until we have ASSOCIATIVITY many elements

Group-testing algorithm



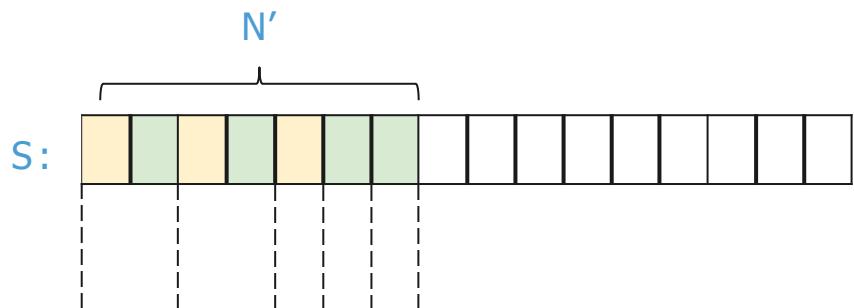
We repeat this process until we have ASSOCIATIVITY many elements

Group-testing algorithm



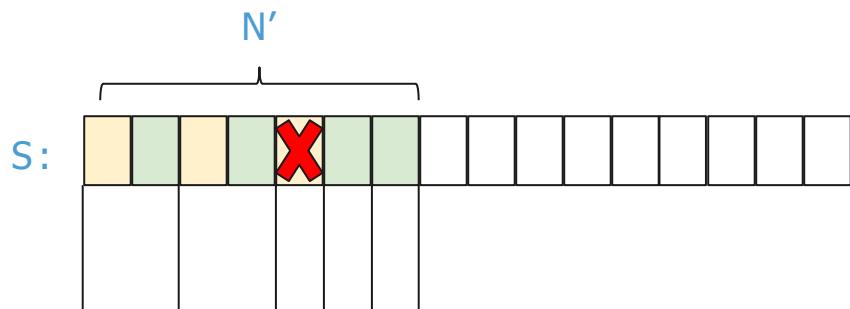
We repeat this process until we have ASSOCIATIVITY many elements

Group-testing algorithm



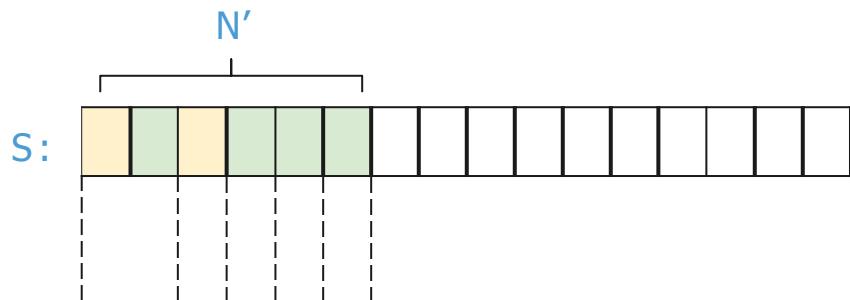
We repeat this process until we have ASSOCIATIVITY many elements

Group-testing algorithm



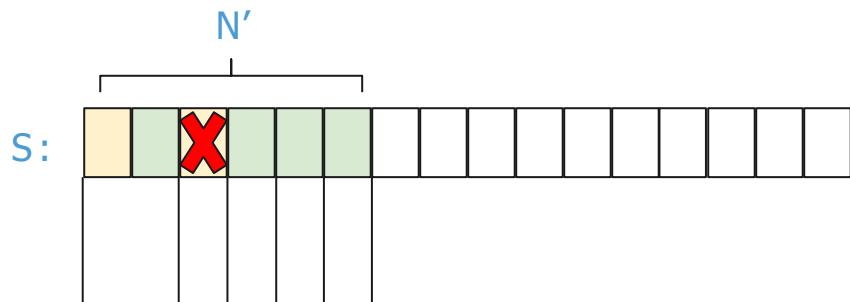
We repeat this process until we have ASSOCIATIVITY many elements

Group-testing algorithm



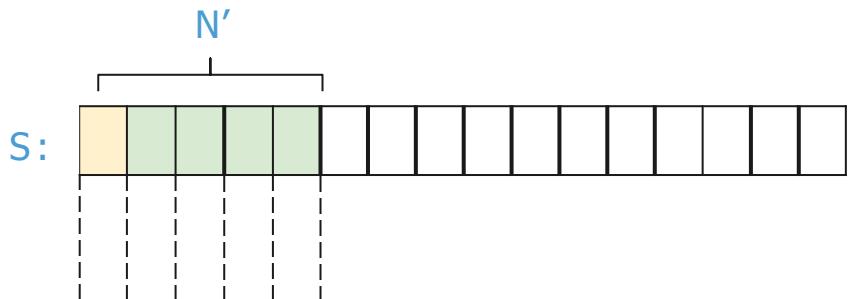
We repeat this process until we have ASSOCIATIVITY many elements

Group-testing algorithm



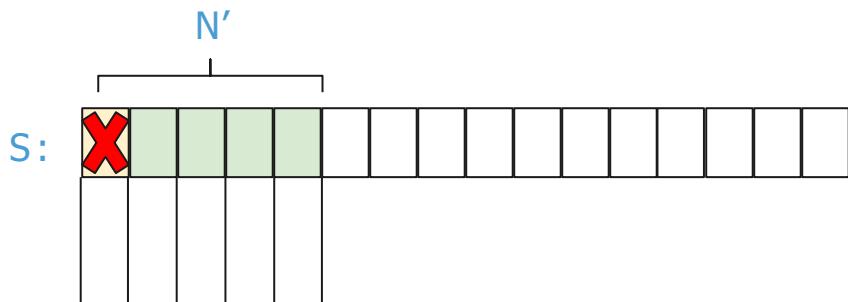
We repeat this process until we have ASSOCIATIVITY many elements

Group-testing algorithm



We repeat this process until we have ASSOCIATIVITY many elements

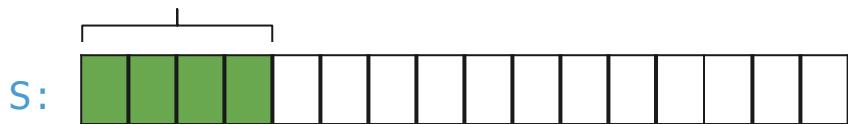
Group-testing algorithm



We repeat this process until we have ASSOCIATIVITY many elements

Group-testing algorithm

ASSOCIATIVITY



We find our minimal eviction set!

Group-testing algorithm

ASSOCIATIVITY

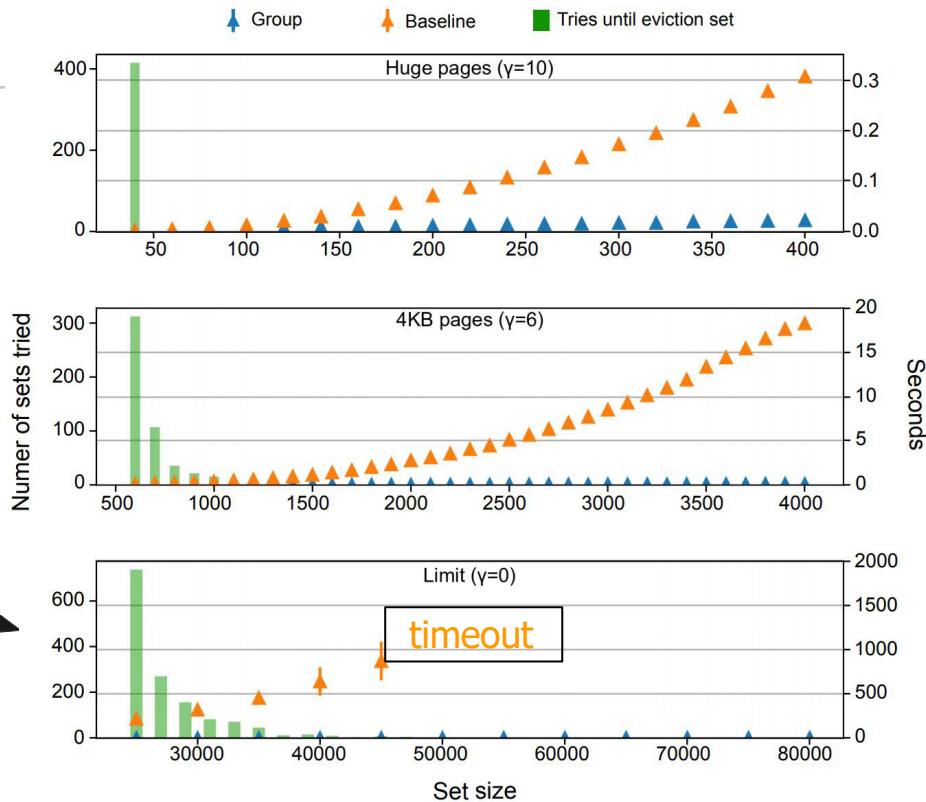
$O(N)$ mem accesses

Performance Evaluation

$O(n)$ vs. $O(n^2)$ advantage shows up in practice!

Finding minimal eviction sets is practical without knowledge on any bits of the set index!

Experiments on Skylake i5-6500 with 6MB cache (8192 sets x 12 assoc)



Y-right (lines): Average running time for eviction set reduction

Y-left (columns): Cost of finding an initial eviction set of certain size

Conclusions

Finding minimal eviction sets is a threshold group-testing problem:
new insight for research on principled countermeasures

Novel linear-time algorithm makes attacks faster and
enables them in scenarios previously considered impractical

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL