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Today’s Class

* How to practically build eviction sets for conducting cache
attacks




Page Mapping

Page Table per process: maps virtual to
Process 1 hvsical add
physical addresses Physical Address Space
(limited by DRAM size)
4KB L
PA
4KB
Process 2 4KB
4KB
Virtual Address Space
(Programmer's View)




Address Translation (4KB page)

48 12 11 0
Virtual Address (48bit): Virtual page number (VPN) Page offset
(12 bits)
\ J
Page
Table Copy
page offset
31 12 11 0
Physical Address (32bit): Physical page number (PPN) P?f; gf:s;at
its




Cache Indexing

4 KB page
2 MB page

32 20 16 1 |5 0|
Frame number Page offset
Large frame number Large Page offset
- ~ A ~ _/\-__._Y__f
Tag Set index Line offset



* | have a physical address:
OxAAAA Question 1:

What is the cache set index?

* The cache parameters are as

below
* Cache size: 32KB Question 2:
* Line size/Block size: 64B What is the next address that maps

to the same cache set as this one

* Associativity: 8 _
but not the same cache line?




Evict+Reload
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Attack Strategy #3: Prime+Probe
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Attack Strategy #3: Prime+Probe
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Eviction Sets

CACHE
Set of addresses that collide in cache: SLICE 0
l.e. addresses mapped into the same cache
set E

sets

SLICE 1
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Eviction Sets
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Eviction Sets

CACHE

Find addresses that collide in cache: i.e. SLICE
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Eviction Sets

CACHE
Find addresses that collide in cache: i.e. SLICE 0
addresses mapped into the same cache set
g
Find associativity many colliding addresses: =
i.e. an eviction set SLICE 1
sets




Attacks

{ Efficient attacks require small eviction sets }




Attacks

Efficient attacks require small eviction sets

Prime+Probe

Prime+Probe Attacks
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Attacks

Efficient attacks require small eviction sets

Prime+Probe
Rowhammer
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Attacks

Spectre

[ Efficient attacks require small eviction sets }
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Problem

-
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Unknown translation from virtual to physical addresses J

USER PROCESS

PHYSICAL MEMORY
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Problem { In some scenarios, even unknown virtual address ]

USER PROCESS PHYSICAL MEMORY CACHE

o SLICEO
<script> §
var foo = new Uint32Array (N) ; s,
fool[l2]; %
c.. - <
</script> ‘? ‘? ‘? sets

Eﬁ

text heap stack sets

low high




Problem

USER PROCESS

PHYSICAL MEMORY

oo e

var foo
foo[l2];

<script>
= new Uint32Array (N) ;

</script>

text
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Defintions

« Two virtual address x and y are congruent if they map to
same cache set

X=Yy
* The equivalence class [x] of x w.r.t. ~is the set of all virtual
addresses that maps to the same cache set as x

* sel(-): set index bits
* pt(-): physical address
o X =y iff set(pt(x))= set(pt(y))



Definitions

« \We say that a set of virtual addresses S, for a cache of
associativity a is:

e an eviction set for x if x ¢ S and at least a addresses in
S map to the same cache set as x:

l]n S| >a



Eviction Test

* a,Iis a victim address we want to evict
« Testto see if S={a,, a4, ..., 8,4} IS an eviction set for a,

O
av a0 a1 an av




Finding minimal eviction sets

‘  « Find alarge eviction set for an address V: )

- Pick “enough’ addresseséat random
a, d, a, .. a

E\f___ J

N

- Timing test:

n




Finding minimal eviction sets

‘ (~« Find alarge eviction set for an address V- )

- Pick “enough” addresses g_t random
av 80 a1 an av

N

- Timing test:

[Reduce initial large eviction set into its minimal core




Baseline Algorithm

In: S=candidate set, x=victim address
Out: R=minimal eviction set for v

R« {}
while |R| < a do
c < pick(S)
if =TEST(RU (S \ {c}), x) then
R+ RU{c}
end if
S+ S\ {c}
end while
return R

A AN A e



Baseline algorithm

Start with large enough eviction set
S of size N

A —
[ \




Baseline algorithm

Pick candidate element C, and

Test if remaining set TEST(S\{C}) is
still an eviction set

NI

A —
[ \




Baseline algorithm

If TEST(S{C}) = True, discard C
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Baseline algorithm

and continue with N’=N-1
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Baseline algorithm
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Baseline algorithm

Until we find an element C such
that when removed the remaining
set stops being an eviction set:

v TEST(S\{C}) = False

1 —
[ |




Baseline algorithm

We learn that C is congruent
to x
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Baseline algorithm

We keep track of it, and insert it
againin S
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Baseline algorithm

We repeat this process several
times
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Baseline algorithm

We repeat this process several
times
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Baseline algorithm

Until we have identified
ASSOCIATIVITY many elements
representing the eviction set’s core!

A —_

ASSOCIATIVITY



Baseline Algorithm

In: S=candidate set, x=victim address
Out: R=minimal eviction set for v

R« {}
while |R| < a do
c < pick(S)
if =TEST(RU (S \ {c}), x) then
R+ RU{c}
end if
S+ S\ {c}
end while
return R
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Baseline algorithm

O(N2) memory accesses

ASSOCIATIVITY



Threshold Group Testing

®
e ,.° ® (10 individual tests)
{Group testing problem by Robert Dorfman (1943) J o ® ®oe

Blood samples
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Threshold Group Testing

(4 group tests +
{Group testing problem by Robert Dorfman (1943) J 3 individual tests )

Blood samples
4 N

Generalization by Peter Damaschke (2006):

- Positive test only if at least “u” defectives
- Negative test only if at most “|” defectives
- Random otherwise

" J
.




Threshold Group Testing

(4 group tests +
{Group testing problem by Robert Dorfman (1943) J 3 individual tests )

-~

Generalization by Peter Damaschke (2006):

- Positive test if at least “u” defectives
- Negative test if at most “I” defectives
- Random answer otherwise

"

~

)

Blood samples

Observation: Our
test is a threshold
group test!



Key idea

« Start with huge eviction set S for cache of associativity a

— partition S into a + 1 disjoint subsets T,, .. ., T_+1 of
(approximately) the same size.
— A counting argument shows leastone j € {1, ..., a+ 1} such

that S\ Tj IS still an eviction set




Improved Algorithm

In : S=candidate set, x=victim address
Out : R=minimal eviction set for x

while |S| > « do
{T1,...;Toy1} < split(S, a + 1)
141
while —~TEST(S \ T}, =) do
141+ 1
end while
S« S\T;
end while
return S

A A R

H
—



Group-testing algorithm

Start with large enough eviction set
S of size N

A —
[ \




Group-testing algorithm

Split S inASSOCIATIVITY+1
subsets
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Group-testing algorithm

In the worst case, there exists a
union of ASSOCIATIVITY subsets
being an eviction set
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Group-testing algorithm

We can discard
N/(ASSOCIATIVITY+1) elements
per iteration
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Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many
elements
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We repeat this process until we
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Group-testing algorithm

We repeat this process until we
have ASSOCIATIVITY many
elements

W =




Group-testing algorithm

We find our minimal eviction set!

ASSOCIATIVITY

l —_




Group-testing algorithm

ASSOCIATIVITY

O(N) memaccesses




Performance Evaluation

-~

O(n) vs. O(n?) advantage shows up in
practice!

Finding minimal eviction sets is

thhe set index!

practical without knowledge on any bits

~

Experiments on Skylake i5-6500 with 6MB cache (8192 sets x 12 assoc)
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Conclusions

Finding minimal eviction sets is a threshold group-testing problem:
new insight for research on principled countermeasures

Novel linear-time algorithm makes attacks faster and
enables them in scenarios previously considered impractical
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