
Comp 590-184:
Hardware Security and Side-Channels

Lecture 7: Cache Side-Channel
Defenses
February 3, 2026
Andrew Kwong

Slides adapted from Mengjia
Yan (shd.mit.edu)

Outline

• How to mitigate side-channel attacks

•Non-interference property

•Constant-time programming

Attack Examples

def check_password(input):

size = len(password);

for i in range(0,size):
if (input [i] == password[i]):
return ("error");

return (“success”);

Example #1: termination time vulnerability

for i = n-1 to 0 do
r = sqr(r)
r = r mod n

r = mul(r, b)
r = r mod n

end
end

Example #2: RSA cache vulnerability

if ei == 1 then

Who to blame? Who should fix the
problem?

4

Break SW and HW Contract

Instruction Set
Architecture (ISA)

Software

Hardware

The contract
for functional
correctness.

Software Developer's Problem

Software developers:
• Need to write software for devices with

unknown design details.
• How can I know whether the program is

secure running on different devices?

Hardware Designer’s Problem

Hardware designer:
• Need to design processors for arbitrary

programs.
• How to describe what kind of programs can

run securely on my device?

Example: Termination Time Vulnerability

• How to fix it?

Make the computation time independent
from the secret (password)

def check_password(input):

size = len(password);

for i in range(0,size):
if (input [i] != password[i]):
return ("error");

return (“success”);

Non-Interference Example

High: root password, etc.

Low: public data base,
website content

• Intuitively: not affecting
• Any sequence of low inputs will produce the same low outputs,

regardless of what the high level inputs are.

⟹ M1L' = M2L′

Non-Interference: A Formal Definition

• The definition of noninterference for a deterministic program P

∀ M1, M2, P

M1L = M2L ∧ (M1, P) →∗ M1′ ∧ (M2, P) →∗ M2′

Non-Interference for Side Channels

• The definition of noninterference for a deterministic program P

What should be included in the observation trace?

⟹

M1L = M2L ∧ (M1, P) →∗ M1′ ∧ (M2, P) →∗ M2′

∀ M1, M2, P
O1 O2

O1=O2

Understanding the Property

Consider input as part of M
• What is ML ?
• What is MH ?
• What is O ?

def check_password(input):

size = len(password);

for i in range(0,size):
if (input [i] == password[i]):
return ("error");

return (“success”);

∀ M1, M2, P

M1L = M2L ∧ (M1, P) →∗ M1′ ∧ (M2, P) →∗ M2′

⟹ O1=O2

O1 O2

Constant-Time Programming

Think about whether the statement below is a reasonable definition
that follows non-interference

• For any inputs, secret values, and machines, a program always takes the same
amount of time to execute.

• For any inputs and secret values, a program always takes the same
amount of time when executing on the same machine.

• For any secret values, a program always takes the same amount of time for
the same input when executing on the same machine.

• For any secret values, a program always takes the same amount of time for
the same input when executing on the same machine, and this holds for
arbitrary inputs.

Data-oblivious/Constant-time programming

• How do we deal with conditional branches/jumps?

• How do we deal with memory accesses?

• How do we deal with arithmetic operations: division,
shift/rotation, multiplication?

For details on real-world constant-time crypto, check this out:
https://www.bearssl.org/constanttime.html

Your Code

Compiler

Hardware

http://www.bearssl.org/constanttime.html

def check_password(input):

size = len(password);

for i in range(0,size):
if (input [i] != password[i]):
return ("error");

return (“success”);

dontmatch = false;

dontmatch = true;

def check_password(input):

size = len(password);

for i in range(0,size):

if (input [i] != password[i]):

return dontmatch;

17

dontmatch |= (input [i] != password[i])

def check_password(input):

size = len(password);

dontmatch = false;

for i in range(0,size):

return dontmatch;

dontmatch = false;

dontmatch = true;

def check_password(input):

size = len(password);

for i in range(0,size):
if (input [i] != password[i]):

return dontmatch;

Real-world Crypto Code

from libsodium cryptographic library:

for (i = 0; i < n; i++)
d |= x[i] ^ y[i];

return (1 & ((d - 1) >> 8)) - 1;

Compare two buffers x and y, if match, return 0, otherwise, return -1.

Examples from Cauligi et al. FaCT: A DSL for Timing-Sensitive Computation. PLDI’19

Department Name 20

Eliminate Secret-dependent Branches

• An instruction: cmov_
• Check the state of one or more of the status flags in the EFLAGS

register (cmovz: moves when ZF=1)
• Perform a move operation if the flags are in a specified state
• Otherwise, a move is not performed and execution continues with

the instruction following the cmov instruction

Conditional Branches

if (secret) x = e

x = (-secret & e) | (secret - 1) & x

test secret, secret // set ZF=1 if zero
cmovz r2, r1 // r2 for x, r1 for e

What do we assume
about the hardware here?

More Conditional Branches

if (secret)
res = f1();

else
res = f2();

r1 ← f1();
r2 ← f2();
mov r3, r1
test secret, secret
cmovz r3, r2
// res in r3

Potential problems:
• What if we have nested branches?
• What if when secret==0, f1 is not executable, e.g.,

causing page fault or divide by zero?
• What if f1 or f2 needs to write to memory, perform IO,

make system calls?
• Hardware assumption: what if cmovz will be executed

as soon as the flag is known (e.g., speculative
execution)?

Memory Accesses

• Performance overhead.
• Techniques such as ORAM can reduce

the overhead when the buffer is large

a = buffer[secret]

for (i=0; i<size; i++)
{

tmp = buffer[i];
xor secret, i
cmovz a, tmp

}

24

An Optimization

• We can reduce the redundant accesses by only accessing one byte in
each cache line.

offset = secret % 64;
for (i=0; i<size; i+=64)
{

index = i+offset;
tmp = buffer[index];
xor secret, index
cmovz a, tmp

}

for (i=0; i<size; i++)
{

tmp = buffer[i];
xor secret, i
cmovz a, tmp

}

OpenSSL Patches Against Timing Channel

Yarom et al. CacheBleed: A Timing Attack on OpenSSL Constant Time RSA.
https://faculty.cc.gatech.edu/~genkin/cachebleed/index.html

26

CacheBleed, an attack leaks SSL
keys via L1 cache bank conflict.

Arithmetic Operations

Subnormal floating point numbers

27

SIMD Hardware Implementation

Example: 4 pipelined functional units

C[4]

C[8]

C[0]

A[24] B[24] A[25] B[25] A[26] B[26] A[27] B[27]
A[20] B[20] A[21] B[21] A[22] B[22] A[23] B[23]
A[16] B[16] A[17] B[17] A[18] B[18] A[19] B[19]

A[12] B[12] A[13] B[13] A[14] B[14] A[15] B[15]

C[5]

C[9]

C[1]

C[6]

C[10]

C[2]

C[7]

C[11]

C[3]

ADDV.D V3, V1, V2

Vector code
LI VLR, 64
LV V1, R1
LV V2, R2

SV V3, R3

The Problem and A Solution

Rane et al. Secure, Precise, and Fast Floating-Point Operations on x86 Processors. USENIX’16

Constant-time ISA

• Some efforts:
• ARM Data Independent Timing (DIT)
• Intel Data Operand Independent Timing (DOIT)

ARM DIT: https://developer.arm.com/documentation/ddi0601/2020-12/AArch64-Registers/DIT--Data-Independent-Timing
Intel DOIT: https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-
operand-independent-timing-isa-guidance.html

http://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-
http://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-
http://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-
http://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-
http://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-
http://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-
http://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-
http://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-

	Comp 590-184:�Hardware Security and Side-Channels��
	Outline
	Attack Examples
	Who to blame? Who should fix the problem?
	Break SW and HW Contract
	Software Developer's Problem
	Hardware Designer’s Problem
	Example: Termination Time Vulnerability
	Non-Interference Example
	Non-Interference: A Formal Definition
	Non-Interference for Side Channels
	Understanding the Property
	Constant-Time Programming
	Data-oblivious/Constant-time programming
	Slide Number 17
	Slide Number 18
	Real-world Crypto Code
	Slide Number 20
	Eliminate Secret-dependent Branches
	Conditional Branches
	More Conditional Branches
	Memory Accesses
	An Optimization
	OpenSSL Patches Against Timing Channel
	Arithmetic Operations
	SIMD Hardware Implementation
	The Problem and A Solution
	Constant-time ISA
	End slide

