Comp 590-184:
Hardware Security and Side-Channels

Slides adapted from Mengjia

Yan (shd.mit.edu)

Outline

* How to mitigate side-channel attacks

*Non-interference property

*Constant-time programming

Attack Examples

Example #1: termination time vulnerability Example #2: RSA cache vulnerability
def check password(input): for i = n-1 to 9 do
. . N r = sqr(r)
size = len(password); r =r mod n
o . if e; == 1 then
for i in range(0,size): r = mul(r, b)
- J
if (input [i] == password[i]): r =r mod n
return ("error");
end
end
return (“success™);

Who to blame? Who should fix the
problem?

001077y
07
TG

s

Break SW and HW Contract

001077
\01010007011010
%0171000 Software

The contract

Instruction Set 0O O for functional
Architecture (ISA) correctness.

@
i :b° Hardware

Software Developer's Problem

Software developers:

* Need to write software for devices with
unknown design details.

* How can | know whether the program is
secure running on different devices?

il o9fr° qfr°
A= A= A=
& U R s st U =

Hardware Designer’s Problem

001077,
oS

001077,
1019700557119%0

001077
1010700007710%3

? Hardware designer:

.ol |-o. * Need to design processors for arbitrary

L= L

O— "" —0 programs.

6. Jo How to describe what kind of programs can
°‘U° run securely on my device?

Example: Termination Time Vulnerability

e How to fixit?

def check password(input):

size = len(password);

Make the computation time independent

for 1 in range(@,size):
ge() from the secret (password)

if (input [i] != password[i]):
return ("error");

return (“success”);

Non-Interference Example

High: root password, etc.

o
ey
-—

\ Low: public data base,
website content

* Intuitively: not affecting

* Any sequence of low inputs will produce the same low outputs,
regardless of what the high level inputs are.

Non-Interference: A Formal Definition

* The definition of noninterference for a deterministic program P

v M1,M2,P

M1, =M2, A (ML P)->*M1' A (M2,P)—*M2

= M1,/'=M2/,’

Non-Interference for Side Channels

* The definition of noninterference for a deterministic program P

v M1,M2,P

(O) 02
M1, =M2, A (ML P)->*M1' A (M2,P)—*M2

— 01=02

What should be included in the observation trace?

Understanding the Property

Vv M1,M2,P def check password(input):
01) 02
M1, =M2, A (M1,P) ->*M1" A (M2,P) -*M2' size = len(password);
= 01=02 L. .
for i in range(9,size):

if (input [i] == password[i]):
return ("error");

Consider input as part of M
* Whatis M, ?

* Whatis My ?

* WhatisO?

return (“success”);

Constant-Time Programming

Think about whether the statement below is a reasonable definition
that follows non-interference

* For any inputs, secret values, and machines, a program always takes the same
amount of time to execute.

* For any inputs and secret values, a program always takes the same
amount of time when executing on the same machine.

* For any secret values, a program always takes the same amount of time for
the same input when executing on the same machine.

* For any secret values, a program always takes the same amount of time for
the same input when executing on the same machine, and this holds for

arbitrari iniuts.

Data-oblivious/Constant-time programming

* How do we deal with conditional branches/jumps?

* How do we deal with memory accesses?

* How do we deal with arithmetic operations: division,
shift/rotation, multiplication?

Your Code

Compiler

For details on real-world constant-time crypto, check this out:
https://www.bearssl.org/constanttime.html Hardware

http://www.bearssl.org/constanttime.html

def check password(input):

size = len(password);
for i in range(9,size):

return ("error");

return (“success”);

if (input [i] != password[i]):

def check password(input):

size = len(password);
dontmatch = false;
for i in range(9,size):
if (input [i] != password[i]):
dontmatch = true;
17

return dontmatch;

def check_password(input): def check password(input):

size = len(password); size = len(password);

dontmatch = false; dontmatch = false:

for i in range(0,size): for i in range(®@,size):
, :

if (input [i] != password[i]): -
TR =) dontmatch |= (input [i] != password[i])

return dontmatch; return dontmatch;

Real-world Crypto Code

from libsodium cryptographic library:

for(i=0;i<n;i++)
d |=x[i] A y[il;
return (1 & ((d-1)>>8))-1;

Compare two buffers x and y, if match, return O, otherwise, return -1.

Examples from Cauligi et al. FaCT: A DSL for Timing-Sensitive Computation. PLDI'19

Another Example

From the “donna” Curve25519 implementation

for (1 = @; i < 5; ++1)
{ for (1 =0; i < 5; ++1) {
if (swap) { const 1limb x = swap & (a[i] ~ b[i]);
tmp = a[i]; » a[i] ~= x;
a[i] = b[i]; b[i] "= x;
b[i] = tmp; }
}
} swap is a mask, either 0 or OxFFFFFFFF

Eliminate Secret-dependent Branches

* Aninstruction: cmov_

* Check the state of one or more of the status flags in the EFLAGS
register (cmovz: moves when ZF=1)
* Perform a move operation if the flags are in a specified state

* Otherwise, a move is not performed and execution continues with
the instruction following the cmov instruction

Conditional Branches

if (secret) x = e

x = (-secret & e) | (secret - 1) & x

What do we assume
_ about the hardware here? \

test secret, secret // set ZF=1 if zer'o,,Q
cmovz r2, rl // r2 for x, rl for e |

More Conditional Branches

if (secret) Potential problems:
lpes = f1(); * What if we have nested branches?
elLse
res — 'F2() . * Whatif when secret==0, 1 is not executable, e.g.,
> causing page fault or divide by zero?
‘ * Whatif 1 or £2 needs to write to memory, perform IO,
make system calls?

rl <« f1(); » Hardware assumption: what if cmovz will be executed
r2 « f2(); as soon as the flag is known (e.g., speculative

mov r3, ril execution)?
J

test secret, secret
cmovz r3, r2

// res in r3

Memory Accesses

a = buffer|[secret]

* Performance overhead.

‘ * Technigues such as ORAM can reduce
the overhead when the buffer is large

for (i=0; i<size; i++)

{
tmp = buffer[i];
xor secret, i
cmovz a, tmp

}

An Optimization

* We can reduce the redundant accesses by only accessing one byte in
each cache line.

offset = secret % 64;
for (i=0; i<size; i++) for (i=0; i<size; i+=64)
{ {

tmp = buffer[i]; ;
xor secret, i » tmp = buffer[index];
cmovz a, tmp xor secret, index
} cmovz a, tmp
}

OpenSSL Patches Against Timing Channel

offset
Line 0

Line 1
Line 2
Line 3
Line 4
Line 5
Line 6
Line 7
Line 8

Line 191

63 offset 0 1 2
aes Line 0 M,[0]
AP M, [127] Line 1
.. B3 Line 3

POTI M, [191] Line 5 RS M,[S]
cee M,[63] Line 6 A0 M;,[6]

XX M,[127] Line 7 M,[7]

SO i I

. . . .

.
. . .

. . . .
Me;[128] [M3[129] [M[130] EEXRIE M.:[191] [ERCRCIEN M,[191] | M,[191] [M,[191]

Fig. 1. Conventional (left) vs. scatter-gather (right) memory layout.

63
Mg

alll
Mgl2]
Mgl3]
Ml4]
Ml5]
Mg6]
Mgl7]
l-.
.

Mg[8]

Mg;[191]

Yarom et al. CacheBleed: A Timing Attack on OpenSSL Constant Time RSA.

https://faculty.cc.gatech.edu/~

enkin/cachebleed/index.html

CacheBleed, an attack leaks SSL
keys via L1 cache bank conflict.

26

Arithmetic Operations

Latency of Square Root Instruction

Subnormal floating point numbers o DiEren Tes o s
160 158
siglnI exponent (8 hits) ' fraction (23 bits) 4
[o]o1[1]1]1]1]o]of o] 1] of o] o] o] of o] of o] o] 0] of 0] o] 0] of o] 0 120
31 30 23 22 (bit index) s Rohy
o 80
&) slower
40
11 S8yl fee]
0

Normal NaN Zero Infinity Subnormal

Measured on an Intel Sandy Bridge processor.

SIMD Hardware Implementation

Vector code
LI VLR, 64

LV V1, R1
LV V2, R2

Example: 4 pipelined functional units

A[24] B[24] A[25] B[25] A[26] B[26] A[27] B[27]
A[20] B[20] A[21] B[21] A[22] B[22] A[23] B[23]
A[16] B[16] A[17] B[17] A[18] B[18] A[19] B[19]
SV V3, R3 A[12] B[12] A[13] B[13] A[14] B[14] A[15] B[15]

‘\ h 4 V</l_ ‘\ v V</l_ ‘\ v V</l_
\ C[9] / \C[lO] / \C[ll] /
C['0] C[vl] C['Z] C['3]

The Problem and A Solution

A*B A*B
C*D C*D

(intended After (intended P*Q P*Q

operation) (intended transformation operation) (intended
) P @ operation) | > o (dummy I operation) (dummy
£ [next instr.] E E operation) S operation)

[next instr.]
[next instr.] [next instr.]
(a) Original (b) Transformed
(non-secure) code (secure) code

Rane et al. Secure, Precise, and Fast Floating-Point Operations on x86 Processors. USENIX'16

Constant-time ISA

* Some efforts:
* ARM Data Independent Timing (DIT)
* Intel Data Operand Independent Timing (DOIT)

ARM DIT: https://developer.arm.com/documentation/ddi0601/2020-12/AArch64-Registers/DIT--Data-Independent-Timing
Intel DOIT: https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-quidance/best-practices/data-
operand-independent-timing-isa-quidance.html

http://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-
http://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-
http://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-
http://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-
http://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-
http://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-
http://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-
http://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-

	Comp 590-184:�Hardware Security and Side-Channels��
	Outline
	Attack Examples
	Who to blame? Who should fix the problem?
	Break SW and HW Contract
	Software Developer's Problem
	Hardware Designer’s Problem
	Example: Termination Time Vulnerability
	Non-Interference Example
	Non-Interference: A Formal Definition
	Non-Interference for Side Channels
	Understanding the Property
	Constant-Time Programming
	Data-oblivious/Constant-time programming
	Slide Number 17
	Slide Number 18
	Real-world Crypto Code
	Slide Number 20
	Eliminate Secret-dependent Branches
	Conditional Branches
	More Conditional Branches
	Memory Accesses
	An Optimization
	OpenSSL Patches Against Timing Channel
	Arithmetic Operations
	SIMD Hardware Implementation
	The Problem and A Solution
	Constant-time ISA
	End slide

