Virtual Memory for
Security

Noah Brown - slides adapted from Onur Mutlu and Don Porter



https://safari.ethz.ch/architecture/fall2025/lib/exe/fetch.php?media=kanellok-fall-ca-2025-lecture-22-virtual-memory-before-lecture.pdf
https://www.cs.unc.edu/~porter/courses/comp530/f24/slides/paging.pdf
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A Real World Analogy

e Pieces of paper: physical pages
e All of you: processes “doing your thing”, no need for memory right now

e Disk: giant whiteboard in back of room

e Myself: the OS




Virtual Addresses

e Processes only ever see virtual addresses
o No physical backing until a frame is mapped
e The OS handles the conversion of virtual to physical

e Example
o 1 MB (20-bit) VAs
o 64 KB (16-bit) PAs

o 4 KB (12-bit) pages
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Page Tables

e 1 entry for each virtual page
e Each page table entry (PTE) has:
o Valid bit - whether page is in memory
o Physical page number - where page is in memory

o A bunch of other “flags”



Page Tables

e The VPN says where to look in the page table
e Example:
o VA: 0x04450
o The page table translates page 04 to frame 6
m Looks at the 04th entry in the table

o PA: 0x6450
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Page Faulting

e \When data must be retrieved from storage first
e Then, have to find a free spot in memory for that data

e Very slow operation - order of ~ms

e |[f memory is full, have to evict something
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A Real World Analogy

e | have limited pieces of paper
e If somebody needs one, | have to take a page from somebody else

e | can’t lose this person’s data!

e So | write it down somewhere on the whiteboard




Further Complications

e Page tables are big

e Solution: break page table into many smaller tables
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Further Complications

e Modern systems use 4 or 5-level paging

e Problem: now have to access 4 or 5 spots in memory...just to access
data in memory (5-6x slowdown!)

e Solution: Translation Lookaside Buffer (TLB)

o Acts as a “cache” to store most recently translated addresses



A Real World Analogy

e Keep a sticky note with me as | walk around the room
e \Whenever somebody needs a page:

o Check if its location is on sticky note

o If not, then go to front pages and start figuring where it is




Page Size Trade-Offs

e Larger pages:
o More frequent TLB hits
o Smaller page tables
e Smaller pages:

o Reduced wasting of memory



Page Size Trade-Offs

e |nterms of generating eviction sets, remember that we assume we can't
figure out the virtual-to-physical mapping
e Are bigger or smaller pages more useful for generating eviction sets?

e Bigger pages are helpful; more bits remain the same (offset doesn’t

change)
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Memory Protection

e Multiple processes can run simultaneously

o The OS has a page table for each process

e A process can only access physical pages in its own page table
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Memory Protection

e These flags can include:
o Whether the page is readable/writable
o Whether a user can access the page (or only kernel)
e By enforcing these flags (bits), the OS can prevent processes from
tampering with other processes’ data

e ...but what happens when security fails?
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Can Security Fail?

e What if your hardware is unreliable?

e An attacker can induce bit errors in many commodity DRAM memory

chips

e Many different memory vulnerabilities; will look at some in coming weeks




Can Security Fail?

e For now, we just assume that memory isn't 100% reliable
e |n other words, assume we can cause a small fraction of bits in physical

memory to flip

e \What's the damage?




Can Security Fail?

e Recall that a page table entry has:
o Valid bit - can validate an old mapping/invalidate a current one

o Read/write bit - can make a page writable that wasn’t before

o Physical page number - change where a VA maps to
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The Bottom Line

e There’s an inherent contract between virtual and physical memory

e Hardware faults violate this contract

e Further work on defending physical memory is crucial




