
Virtual Memory for
Security

Noah Brown - slides adapted from Onur Mutlu and Don Porter

https://safari.ethz.ch/architecture/fall2025/lib/exe/fetch.php?media=kanellok-fall-ca-2025-lecture-22-virtual-memory-before-lecture.pdf
https://www.cs.unc.edu/~porter/courses/comp530/f24/slides/paging.pdf

Virtual Memory

Process’ View of Memory

3

Memory

Store

Load

Process’ View of Memory

4

Virtual
Memory

Store

Load

“Infinite” capacity

Process’ View of Memory

5

Virtual
Memory

Store

Load

“Infinite” capacity

In practice, physical memory is
much smaller

Process’ View of Memory

6

Virtual
Memory

Store

Load

“Infinite” capacity

In practice, physical memory is
much smaller

The OS maps virtual to physical
transparently

Process’ View of Memory

7

Virtual
Memory

Store

Load

“Infinite” capacity

In practice, physical memory is
much smaller

The OS maps virtual to physical
transparently

How can we maintain this illusion?

Process’ View of Memory

8

Virtual
Memory

Store

Load

“Infinite” capacity

In practice, physical memory is
much smaller

The OS maps virtual to physical
transparently

How can we maintain this illusion?

Physical
Memory

Virtualization of Memory

9

Segment virtual/physical memory
into pages and frames

Physical
Memory

Virtual
Memory

Virtualization of Memory

10

Segment virtual/physical memory
into pages and frames

Physical
Memory

Virtual
Memory

Pages are either in physical
memory or out on disk

Storage

Virtualization of Memory

11

Segment virtual/physical memory
into pages and frames

Physical
Memory

Virtual
Memory

Pages are either in physical
memory or out on disk

To the process, memory is
contiguous and plentiful

Storage

A Real World Analogy

12

● Pieces of paper: physical pages

● All of you: processes “doing your thing”, no need for memory right now

● Disk: giant whiteboard in back of room

● Myself: the OS

Virtual Addresses

13

● Processes only ever see virtual addresses

○ No physical backing until a frame is mapped

● The OS handles the conversion of virtual to physical

● Example

○ 1 MB (20-bit) VAs

○ 64 KB (16-bit) PAs

○ 4 KB (12-bit) pages

14

19 12 11 0

VA

15

19 12 11 0

VA

VPN Offset

16

19 12 11 0

VA

VPN Offset

 15 12 11 0

PA

PFN Offset

17

19 12 11 0

VA

VPN Offset

 15 12 11 0

PA

PFN Offset

18

19 12 11 0

VA

VPN Offset

 15 12 11 0

PA

PFN Offset

How does the OS translate VPNs
to PFNs?

19

19 12 11 0

VA

VPN Offset

 15 12 11 0

PA

PFN Offset

How does the OS translate VPNs
to PFNs? Page tables!

Page Tables

Page Tables

21

● 1 entry for each virtual page

● Each page table entry (PTE) has:

○ Valid bit - whether page is in memory

○ Physical page number - where page is in memory

○ A bunch of other “flags”

Page Tables

22

● The VPN says where to look in the page table

● Example:

○ VA: 0x04450

○ The page table translates page 04 to frame 6

■ Looks at the 04th entry in the table

○ PA: 0x6450

23

0x01CB0

24

0x01CB0

PFN Valid

0xB 0

0xE 1

0x1 1

0x3 0

0x4 1

… …

0x9 1

0xA 1

0x2 1

0x5 1

0x6 1

25

0x01CB0

PFN Valid

0xB 0

0xE 1

0x1 1

0x3 0

0x4 1

… …

0x9 1

0xA 1

0x2 1

0x5 1

0x6 1

0xECB0

26

0x02B43

PFN Valid

0xB 0

0xE 1

0x1 1

0x3 0

0x4 1

… …

0x9 1

0xA 1

0x2 1

0x5 1

0x6 1

0x???

27

0x03FFE

PFN Valid

0xB 0

0xE 1

0x1 1

0x3 0

0x4 1

… …

0x9 1

0xA 1

0x2 1

0x5 1

0x6 1

28

0x03FFE

PFN Valid

0xB 0

0xE 1

0x1 1

0x3 0

0x4 1

… …

0x9 1

0xA 1

0x2 1

0x5 1

0x6 1

0x?FFE

29

0x03FFE

PFN Valid

0xB 0

0xE 1

0x1 1

0x3 0

0x4 1

… …

0x9 1

0xA 1

0x2 1

0x5 1

0x6 1

0x?FFE

If the valid bit isn’t set, then the
PFN is meaningless

30

0x03FFE

PFN Valid

0xB 0

0xE 1

0x1 1

0x3 0

0x4 1

… …

0x9 1

0xA 1

0x2 1

0x5 1

0x6 1

0x?FFE

If the valid bit isn’t set, then the
PFN is meaningless

If the page is out in storage, how
do we update the page table?

Page Faulting

31

● When data must be retrieved from storage first

● Then, have to find a free spot in memory for that data

● Very slow operation - order of ~ms

● If memory is full, have to evict something

32

Physical Memory

33

Physical Memory

34

Physical Memory

35

Physical Memory

36

Physical Memory

I want to write to data
in a new page!

37

Physical Memory

I want to write to data
in a new page! Memory is full…what do we do?

38

Physical Memory

I want to write to data
in a new page! Memory is full…what do we do?

Need to pick a page to evict!

39

Physical Memory

I want to write to data
in a new page! Memory is full…what do we do?

Need to pick a page to evict!

What do we need to do before
handing the page over?

40

Physical Memory

I want to write to data
in a new page! Memory is full…what do we do?

Need to pick a page to evict!

What do we need to do before
handing the page over? Write page out to disk!

41

Physical Memory

I want to write to data
in a new page! Memory is full…what do we do?

Need to pick a page to evict!

What do we need to do before
handing the page over? Write page out to disk!

42

Physical Memory

I want to write to data
in a new page! Memory is full…what do we do?

Need to pick a page to evict!

What do we need to do before
handing the page over? Write page out to disk!

A Real World Analogy

43

● I have limited pieces of paper

● If somebody needs one, I have to take a page from somebody else

● I can’t lose this person’s data!

● So I write it down somewhere on the whiteboard

Further Complications

44

● Page tables are big

● Solution: break page table into many smaller tables

45

19 12 11 0

VA

VPN Offset

46

19 12 11 0

VA

PT OffsetPT Index

Further Complications

47

● Modern systems use 4 or 5-level paging

● Problem: now have to access 4 or 5 spots in memory…just to access

data in memory (5-6x slowdown!)

● Solution: Translation Lookaside Buffer (TLB)

○ Acts as a “cache” to store most recently translated addresses

A Real World Analogy

48

● Keep a sticky note with me as I walk around the room

● Whenever somebody needs a page:

○ Check if its location is on sticky note

○ If not, then go to front pages and start figuring where it is

Page Size Trade-Offs

49

● Larger pages:

○ More frequent TLB hits

○ Smaller page tables

● Smaller pages:

○ Reduced wasting of memory

Page Size Trade-Offs

50

● In terms of generating eviction sets, remember that we assume we can’t

figure out the virtual-to-physical mapping

● Are bigger or smaller pages more useful for generating eviction sets?

● Bigger pages are helpful; more bits remain the same (offset doesn’t

change)

Memory Protection

Memory Protection

52

● Multiple processes can run simultaneously

○ The OS has a page table for each process

● A process can only access physical pages in its own page table

53

Physical Memory

54

Physical Memory

Virtual
Memory

55

Physical Memory

Virtual
Memory

Virtual
Memory

56

Physical Memory

Virtual
Memory

Virtual
Memory

Virtual
Memory

57

Physical Memory

Virtual
Memory

Virtual
Memory

Virtual
Memory

58

OS ensures memory stays
isolated

Physical Memory

Virtual
Memory

Virtual
Memory

Virtual
Memory

Memory Protection

59

● Recall that a page table entry has:

○ Valid bit - whether page is in memory

○ Physical page number - where page is in memory

○ A bunch of other “flags”

Memory Protection

60

● Recall that a page table entry has:

○ Valid bit - whether page is in memory

○ Physical page number - where page is in memory

○ A bunch of other “flags”

Memory Protection

61

● These flags can include:

○ Whether the page is readable/writable

○ Whether a user can access the page (or only kernel)

● By enforcing these flags (bits), the OS can prevent processes from

tampering with other processes’ data

● …but what happens when security fails?

62

OS ensures memory stays
isolated

Physical Memory

Virtual
Memory

Virtual
Memory

Virtual
Memory

63

OS ensures memory stays
isolated

What if an attacker can break this
isolation?

Physical Memory

Virtual
Memory

Virtual
Memory

Virtual
Memory

Can Security Fail?

64

● What if your hardware is unreliable?

● An attacker can induce bit errors in many commodity DRAM memory

chips

● Many different memory vulnerabilities; will look at some in coming weeks

Can Security Fail?

65

● For now, we just assume that memory isn’t 100% reliable

● In other words, assume we can cause a small fraction of bits in physical

memory to flip

● What’s the damage?

Can Security Fail?

66

● Recall that a page table entry has:

○ Valid bit - can validate an old mapping/invalidate a current one

○ Read/write bit - can make a page writable that wasn’t before

○ Physical page number - change where a VA maps to

67

Some physical memory is used to
store page tables

Physical Memory

68

Some physical memory is used to
store page tables

Physical Memory

VA PFN R/W
0x10 0x9 W
0x20 0xA W
0x30 0xB R
0x40 0xC W
0x50 0xD R

… … …
0xB0
0xC0
0xD0
0xE0
0xF0

69

Some physical memory is used to
store page tables

Physical Memory

VA PFN R/W
0x10 0x9 W
0x20 0xA W
0x30 0xB R
0x40 0xC W
0x50 0xD R

… … …
0xB0
0xC0
0xD0
0xE0
0xF0

VA PFN R/W
0x10 0x5 R
0x20 0x6 W
0x30 0x7 W
0x40
0x50

… … …
0xB0
0xC0
0xD0
0xE0
0xF0

70

Some physical memory is used to
store page tables

Physical Memory

VA PFN R/W
0x10 0x9 W
0x20 0xA W
0x30 0xB R
0x40 0xC W
0x50 0xD R

… … …
0xB0
0xC0
0xD0
0xE0
0xF0

VA PFN R/W
0x10 0x5 R
0x20 0x2 W
0x30 0x7 W
0x40
0x50

… … …
0xB0
0xC0
0xD0
0xE0
0xF0

A memory attack can cause a
corruption in a page table…

71

Some physical memory is used to
store page tables

Physical Memory

VA PFN R/W
0x10 0x9 W
0x20 0xA W
0x30 0xB R
0x40 0xC W
0x50 0xD R

… … …
0xB0
0xC0
0xD0
0xE0
0xF0

VA PFN R/W
0x10 0x5 R
0x20 0x2 W
0x30 0x7 W
0x40
0x50

… … …
0xB0
0xC0
0xD0
0xE0
0xF0

A memory attack can cause a
corruption in a page table…

…which can give a process write
access to its own page table!

72

Some physical memory is used to
store page tables

Physical Memory

VA PFN R/W
0x10 0x9 W
0x20 0xA W
0x30 0xB R
0x40 0xC W
0x50 0xD R

… … …
0xB0
0xC0
0xD0
0xE0
0xF0

VA PFN R/W
0x10 0x5 R
0x20 0x2 W
0x30 0x7 W
0x40 0xA W
0x50

… … …
0xB0
0xC0
0xD0
0xE0
0xF0

A memory attack can cause a
corruption in a page table…

…which can give a process write
access to its own page table!

The Bottom Line

73

● There’s an inherent contract between virtual and physical memory

● Hardware faults violate this contract

● Further work on defending physical memory is crucial

