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Segment virtual/physical memory 
into pages and frames

Physical
Memory
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Memory

Pages are either in physical 
memory or out on disk

To the process, memory is 
contiguous and plentiful

Storage



A Real World Analogy
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● Pieces of paper: physical pages

● All of you: processes “doing your thing”, no need for memory right now

● Disk: giant whiteboard in back of room

● Myself: the OS



Virtual Addresses
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● Processes only ever see virtual addresses

○ No physical backing until a frame is mapped

● The OS handles the conversion of virtual to physical

● Example

○ 1 MB (20-bit) VAs

○ 64 KB (16-bit) PAs

○ 4 KB (12-bit) pages
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Page Tables
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● 1 entry for each virtual page

● Each page table entry (PTE) has:

○ Valid bit - whether page is in memory

○ Physical page number - where page is in memory

○ A bunch of other “flags”



Page Tables
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● The VPN says where to look in the page table

● Example:

○ VA: 0x04450

○ The page table translates page 04 to frame 6

■ Looks at the 04th entry in the table

○ PA: 0x6450
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Page Faulting
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● When data must be retrieved from storage first

● Then, have to find a free spot in memory for that data

● Very slow operation - order of ~ms

● If memory is full, have to evict something
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● I have limited pieces of paper

● If somebody needs one, I have to take a page from somebody else

● I can’t lose this person’s data!

● So I write it down somewhere on the whiteboard
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● Page tables are big

● Solution: break page table into many smaller tables
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● Modern systems use 4 or 5-level paging

● Problem: now have to access 4 or 5 spots in memory…just to access 

data in memory (5-6x slowdown!)

● Solution: Translation Lookaside Buffer (TLB)

○ Acts as a “cache” to store most recently translated addresses



A Real World Analogy
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● Keep a sticky note with me as I walk around the room

● Whenever somebody needs a page:

○ Check if its location is on sticky note

○ If not, then go to front pages and start figuring where it is



Page Size Trade-Offs
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● Larger pages:

○ More frequent TLB hits

○ Smaller page tables

● Smaller pages:

○ Reduced wasting of memory
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● In terms of generating eviction sets, remember that we assume we can’t 

figure out the virtual-to-physical mapping

● Are bigger or smaller pages more useful for generating eviction sets?

● Bigger pages are helpful; more bits remain the same (offset doesn’t 

change)
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● Multiple processes can run simultaneously

○ The OS has a page table for each process

● A process can only access physical pages in its own page table
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● These flags can include:

○ Whether the page is readable/writable

○ Whether a user can access the page (or only kernel)

● By enforcing these flags (bits), the OS can prevent processes from 

tampering with other processes’ data

● …but what happens when security fails?
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● What if your hardware is unreliable?

● An attacker can induce bit errors in many commodity DRAM memory 

chips

● Many different memory vulnerabilities; will look at some in coming weeks
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● For now, we just assume that memory isn’t 100% reliable

● In other words, assume we can cause a small fraction of bits in physical 

memory to flip

● What’s the damage?



Can Security Fail?
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● Recall that a page table entry has:

○ Valid bit - can validate an old mapping/invalidate a current one

○ Read/write bit - can make a page writable that wasn’t before

○ Physical page number - change where a VA maps to
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● There’s an inherent contract between virtual and physical memory

● Hardware faults violate this contract

● Further work on defending physical memory is crucial


