Virtual Memory for
Security

Noah Brown - slides adapted from Onur Mutlu and Don Porter

https://safari.ethz.ch/architecture/fall2025/lib/exe/fetch.php?media=kanellok-fall-ca-2025-lecture-22-virtual-memory-before-lecture.pdf
https://www.cs.unc.edu/~porter/courses/comp530/f24/slides/paging.pdf

Virtual Memory

Process’ View of Memory

Store

Load

Memory

Process’ View of Memory

Store

Load

Virtual
Memory

“Infinite” capacity

Process’ View of Memory

Store

Load

Virtual
Memory

“Infinite” capacity

In practice, physical memory is
much smaller

Process’ View of Memory

Store

Load

Virtual
Memory

“Infinite” capacity

In practice, physical memory is
much smaller

The OS maps virtual to physical
transparently

Process’ View of Memory

“Infinite” capacity

Store
P Virtual In practice, physical memory is
much smaller
Memory
The OS maps virtual to physical
< transparently
Load

How can we maintain this illusion?

Process’ View of Memory

Virtual
Memory

Load

Physical
Memory

“Infinite” capacity

In practice, physical memory is
much smaller

The OS maps virtual to physical
transparently

How can we maintain this illusion?

Virtualization of Memory

Segment virtual/physical memory
into pages and frames

Virtual Physical
Memory Memory

Virtualization of Memory

Segment virtual/physical memory
into pages and frames

Pages are either in physical
memory or out on disk

Virtual Physical
Memory Memory

Storage

Virtualization of Memory

Segment virtual/physical memory
into pages and frames

Pages are either in physical
memory or out on disk

To the process, memory is
contiguous and plentiful

Virtual Physical
Memory Memory

Storage

A Real World Analogy

e Pieces of paper: physical pages
e All of you: processes “doing your thing”, no need for memory right now

e Disk: giant whiteboard in back of room

e Myself: the OS

Virtual Addresses

e Processes only ever see virtual addresses
o No physical backing until a frame is mapped
e The OS handles the conversion of virtual to physical

e Example
o 1 MB (20-bit) VAs
o 64 KB (16-bit) PAs

o 4 KB (12-bit) pages

19 12 1 0

VA

19 12 1 0

VA

VPN Offset

19 12 1 0

VA

VPN Offset

15 12 11 0

19 12 1

VA
\\ J L
Y Y
VPN Offset
15 12 11
PA
g J
Y Y
PFN Offset

VPN

/ How does the OS translate VPNs
to PFNs?

PFN

VPN

/ How does the OS translate VPNs Page tables!
to PFNs? age tables:

PFN

Page Tables

Page Tables

e 1 entry for each virtual page
e Each page table entry (PTE) has:
o Valid bit - whether page is in memory
o Physical page number - where page is in memory

o A bunch of other “flags”

Page Tables

e The VPN says where to look in the page table
e Example:
o VA: 0x04450
o The page table translates page 04 to frame 6
m Looks at the 04th entry in the table

o PA: 0x6450

0x01CBO

>

0x01CBO

>

PFN

0OxB

OxE

0x1

0x3

0Ox4

0x9

OxA

0x2

0x5

0x6

P N N = N S N .

0x01CBO

>

PFN

Valid

0OxB

OxE

0x1

0x3

0Ox4

o) -

OxECBO

0x9

OxA

0x2

0x5

0x6

U N [U " N IR) R N

>

0x02B43

>

PFN

Valid

0OxB

OxE

0x1

0x3

0x7?7?7?

0Ox4

P I o N IR SN

0x9

OxA

0x2

0x5

— — — — — .

0x6

OxO03FFE

>

PFN

0OxB

OxE

0x1

0x3

0Ox4

0x9

OxA

0x2

0x5

0x6

P N N = N S N .

OxO03FFE

>

PFN

0OxB

OxE

0x1

0x3

0Ox4

Ox?FFE

0x9

OxA

0x2

0x5

0x6

P N N = N S N .

Ox03FFE

>

PFN

Valid

0OxB

OxE

0x1

0x3

0Ox4

~lol-| -

Ox?FFE

0x9

OxA

0x2

0x5

0x6

U N [U " N IR) R N

If the valid bit isn’t set, then the
PFN is meaningless

Ox03FFE

>

PFN

Valid

0OxB

OxE

0x1

0x3

0Ox4

~lol-| -

Ox?FFE

0x9

OxA

0x2

0x5

0x6

U N [U " N IR) R N

If the valid bit isn’t set, then the
PFN is meaningless

If the page is out in storage, how
do we update the page table?

Page Faulting

e \When data must be retrieved from storage first
e Then, have to find a free spot in memory for that data

e Very slow operation - order of ~ms

e |[f memory is full, have to evict something

Physical Memory

Physical Memory

O

Physical Memory

O
p

Physical Memory

Physical Memory

| want to write to data
in a new page!

Physical Memory

| want to write to data
in a new page!

Memory is full...what do we do?

Physical Memory

| want to write to data

in a new page! Memory is full...what do we do?

Need to pick a page to evict!

Physical Memory

| want to write to data

in a new page! Memory is full...what do we do?

@ Need to pick a page to evict!

What do we need to do before
handing the page over?

Physical Memory

| want to write to data

in a new page! Memory is full...what do we do?

Need to pick a page to evict!

&

What do we need to do before
handing the page over?

Write page out to disk!

Physical Memory

| want to write to data

in a new page! Memory is full...what do we do?

@ Need to pick a page to evict!

What do we need to do before

handing the page over? Write page out to disk!

Physical Memory

| want to write to data

in a new page! Memory is full...what do we do?

@ Need to pick a page to evict!

What do we need to do before

handing the page over? Write page out to disk!

A Real World Analogy

e | have limited pieces of paper
e If somebody needs one, | have to take a page from somebody else

e | can’t lose this person’s data!

e So | write it down somewhere on the whiteboard

Further Complications

e Page tables are big

e Solution: break page table into many smaller tables

19 12 1 0

VA

VPN Offset

19 12 1

o (T T

& J U J U

Y Y
PT PT Index

Offset

Further Complications

e Modern systems use 4 or 5-level paging

e Problem: now have to access 4 or 5 spots in memory...just to access
data in memory (5-6x slowdown!)

e Solution: Translation Lookaside Buffer (TLB)

o Acts as a “cache” to store most recently translated addresses

A Real World Analogy

e Keep a sticky note with me as | walk around the room
e \Whenever somebody needs a page:

o Check if its location is on sticky note

o If not, then go to front pages and start figuring where it is

Page Size Trade-Offs

e Larger pages:
o More frequent TLB hits
o Smaller page tables
e Smaller pages:

o Reduced wasting of memory

Page Size Trade-Offs

e |nterms of generating eviction sets, remember that we assume we can't
figure out the virtual-to-physical mapping
e Are bigger or smaller pages more useful for generating eviction sets?

e Bigger pages are helpful; more bits remain the same (offset doesn’t

change)

Memory Protection

Memory Protection

e Multiple processes can run simultaneously

o The OS has a page table for each process

e A process can only access physical pages in its own page table

Physical Memory

Physical Memory

Virtual
Memory

@

Physical Memory

¢ ¢

Virtual Virtual
Memory Memory

¢ |¢

Physical Memory

F @

Virtual Virtual Virtual
Memory Memory Memory

Physical Memory

\
4 ﬁ
2

Virtual ~ Virtual Virtual /
Memory Memory Memory /

O

@ |¥

Physical Memory

L

Virtual Virtual Virtual
Memory Memory Memory

@

OS ensures memory stays
isolated

@ |¥

Memory Protection

e Recall that a page table entry has:
o Valid bit - whether page is in memory

o Physical page number - where page is in memory

o A bunch of other “flags”

Memory Protection

e Recall that a page table entry has:
o Valid bit - whether page is in memory

o Physical page number - where page is in memory

o A bunch of other “flags”

Memory Protection

e These flags can include:
o Whether the page is readable/writable
o Whether a user can access the page (or only kernel)
e By enforcing these flags (bits), the OS can prevent processes from
tampering with other processes’ data

e ...but what happens when security fails?

Physical Memory

L

Virtual Virtual Virtual
Memory Memory Memory

@

OS ensures memory stays
isolated

@ |¥

Physical Memory

SaN
\
Virtual Virtual Virtual |\

Memory Memory Memory “

| OS ensures memory stays
1 isolated
\

What if an attacker can break this
isolation?

@ |¥

Can Security Fail?

e What if your hardware is unreliable?

e An attacker can induce bit errors in many commodity DRAM memory

chips

e Many different memory vulnerabilities; will look at some in coming weeks

Can Security Fail?

e For now, we just assume that memory isn't 100% reliable
e |n other words, assume we can cause a small fraction of bits in physical

memory to flip

e \What's the damage?

Can Security Fail?

e Recall that a page table entry has:
o Valid bit - can validate an old mapping/invalidate a current one

o Read/write bit - can make a page writable that wasn’t before

o Physical page number - change where a VA maps to

Physical Memory

o) @

Some physical memory is used to
store page tables

Physical Memory

A ¢

.
.
.
.
.
.
.
N
.
.

VA [PFN|R/W

0x10] 0x9
0x20| OxA
0x30| OxB
0x40(| OxC
0x50(OxD

Some physical memory is used to
store page tables

nZIZ|2

0xBO
0xCO
0xDO
0xEO
OxFO

Physical Memory

Ao & e
@ a

VA |PFN|R/W VA [PFN|R/W

0x10| 0x9 | W 0x10]0x5| R

0x20] 0xA| W 0x20] 0x6 | W Some physical memory is used to
0x30({0xB| R 0x30]| Ox7 | W store page tables
0x40{0xC | W 0x40

0x50({0xD | R 0x50

0xBO 0xBO0

0xCO0 0xCO0

0xDO0 0xDO0

OxEO OxEO

OxFO OxFO

Physical Memory

AND @

¢ i

VA [PEN[R/W VA [PFN|R/W
ox10{ 0x9 | W 0x10{ 0x5 | R

0x20[OxA | W 0x20[0x2 | W Some physical memory is used to
0x30|0xB| R 0x30| Ox7 | W store page tab|es

0x40[{0xC| W 0x40

0x50{0xD| R 0x50

B0 050 A memo_ry a_ttack can cause a
OxCO 0xCO corruption in a page table...
0xDO 0xDO

0xEO OXEQ

0xFO 0xFO

Physical Memory

VA [PFN[R/W VA [PFN[R/W ,'

ox10{ 0x9 | W 0x10[0x5| R | s

0x20[OxA | W 0x20[0x2 [W |/ Some physical memory is used to
0x30|0xB| R 0x30| Ox7 | W store page tables
0x40[{0xC| W 0x40

0x50{0xD| R 0x50

B0 B0 A memqry a_ttack can cause a
0xCO 0xCO corruption in a page table...
0xDO 0xDO

0xEO 0XEO

0xFO 0xFO ...which can give a process write

access to its own page table!

Physical Memory

Ao & @

- 20
-~
N -
@ ik
-~
VA [PFNJRW VA [PFN]RW _-7
0x10[0x9 | W 0x10[0x5 | R e _ _
0x20[OxA | W 0x20/ 0x2 | W -7 Some physical memory is used to
0x30|0xB| R 0x30| Ox7 | W _” g store page tables
0x40(0xC | W 0x40|0xA| W |~ O
0x50[0xD| R 0x50 /
55 o0 A memory a_ttack can cause a
0xCO 0xCO corruption in a page table...
0xDO 0xDO
0XEO 0XEO _ _ .
0xFO 0xFO ...which can give a process write

access to its own page table!

The Bottom Line

e There’s an inherent contract between virtual and physical memory

e Hardware faults violate this contract

e Further work on defending physical memory is crucial

