
11

Applying Software Side-Channels to
Hardware Vulnerabilities

Andrew Kwong

22

Applications

Operating System

Hardware

Physical

Malware

Hardware abstractions leak
secrets to software!

3

CacheOut

RAMBleed
Rowhammer

4

Implications of Side Channels

• Secure software systems must

consider leakage from the hardware

• Very hard to do when we still don’t

even understand what these attacks

are capable of

Hardware

Software

5
5

Crypto

Operating

System/Architecture

DRAM

Analog

Secure Entropy Generation
[IEEE S&P’20]

Chrome Password Check
[USENIX Security’23]

Post-Quantum Crypto KEMs
[CCS’22]

CacheOut
[IEEE S&P’21]

Spectre+Rowhammer
[IEEE S&P’22]

RAMBleed
[IEEE S&P’20]

Acoustic Eavesdropping
[IEEE S&P’19]

OS Availability Attacks
[IEEE S&P’18]

SGAxe
[Current]

Kernel Hammer
[Current]

My Work

6
6

Crypto

Operating

System/Architecture

DRAM

Analog

Secure Entropy Generation
[IEEE S&P’20]

Chrome Password Check
[USENIX Security’23]

Post-Quantum Crypto KEMs
[CCS’22]

CacheOut
[IEEE S&P’21]

Spectre+Rowhammer
[IEEE S&P’22]

RAMBleed
[IEEE S&P’20]

Acoustic Eavesdropping
[IEEE S&P’19]

OS Availability Attacks
[IEEE S&P’18]

SGAxe
[Current]

Kernel Hammer
[Current]

My Work

RAMBleed

77

88

BrowserUnused Cell Unprivileged UserOpenSSH Server

Row 4

Row 3

Row 1

Row 0

Row 2

• OS enforces isolation

• Can we bypass OS and dump

memory across these boundaries?

99

10

How DRAM works

• Data in row 3 is read

• Entire row is activated and stored in

Row Buffer

• Forwarded to CPU

Row 4

Row 3

Row 1

Row 0

Row 2

Row Buffer CPU

11

Rowhammer for Writing
• Activating a row drains charge from

nearby capacitors

• Repeated activation of rows causes
bit flips in nearby rows!

• Attacker that controls values in rows

1 and 3 writes to victim’s memory in

row 2

• Rowhammer can be used to write

across security domains

• RAMBleed aims to read data from

DRAM

Bit flip!

Row 4

Row 3

Row 1

Row 0

Row 2

Row Buffer CPU

12

Data Dependent Bit Flips

• Stripe Pattern: 0-1-0

• Uniform Pattern: 1-1-1

• Detecting bit flips in row 2 reveals

the likely values in rows 1 and 3

• Data from rows 3 and 1 “bleed” into

row 2

• How can we use this effect to read

something usefulBit flip!

No bit

flip

Row 4

Row 3

Row 1

Row 0

Row 2

Row Buffer

01

01

= more likely to flip

= less likely to flip

13

Memory Layout on DIMM

• How does an unprivileged

user process locate and

acquire this memory layout?

• Developed attack on Linux’s

memory allocator

Row 2

Row 0

Row 1
2MB

Physical
Address
Space

14

Memory Massaging
V

ir
tu

a
l

 A
d

d
re

s
s

 S
p

a
c
e

• DRAMA (Usenix`16) reverse

engineered DRAM mappings

– Uses low 22 bits to determine bank

on our memory setup

– Row index formed by bits 18 and

above

• Suffices to learn low 22 bits of

physical address

• Need to obtain 2MB

physically sequential

memory from unprivileged

user

• /proc/pagetypeinfo

– Lists number of available

blocks of memory for each

size

– Was world readable at the

time of publication

2MB

2MB

• Precise method for

determining the bits is

described in the paper

Virtual
Address
Space

Physical
Address
Space

Demonstrated that memory allocator state is security
sensitive

Linux Restricted Access Afterwards

15

Memory Layout on DIMM

• Attacker’s memory in desired locations:

• Want SSH server’s RSA keys to land in T0 and T1

• Developed “Frame Feng Shui” to place victim’s pages in frames of attacker’s

choosing

Row 2

Row 0

Row 1

16

Frame Feng Shui

Page Frame CacheAttacker’s Frames Victim’s Frames

 alloc(buffer0);
 alloc(buffer1);

 alloc(secret);

Victim Pseudo Code

S
ta

c
k

X Y

buffer1

secret

buffer0

17

• Attacker’s releases T0

• Victim’s Key placed in desired location:

Row 1

Row 2

Row 0

18

Row 2

Row 0

Row 1

• Attacker’s memory in desired locations:

• Victim’s Key placed in desired location:

19

• Set flippable bit to 1

• Try to read bit above and below

• If it flips, secret bit is 0!

• Was a 0-1-0 stripe pattern before the flip

• Accessing data in A0 activates the cells in the Secret’s page

0

0Row 2

Row 0

Row 1

8KiB

10

Flippable bit

20

S
e
t

Y 1

?

?

0

0

0

S
e
t

X

1

1

• Reading the next bit:

• Search memory for a bit flip at desired offset

• Repeat Frame Feng Shui, Hammer, and read another bit

• Repeat for all bits

No bit flip

Flippable bit

1

Current bit to read

21

Results

• Read 68% of a 2048 bit RSA key from

OpenSSH server
– Read from DRAM at 0.31 bits/second

– 82% accuracy

• Read out sufficient bits for full key recovery

in a couple of hours

– With some math tricks

22

What About Servers?

?

23

RAMBleed on ECC Memory

Row 4

Row 3

Row 1

Row 0

Row 2

Row Buffer

0

0

100 Bit flip!

1

Corrected!

1

• Error-Correcting Code Memory:

• Corrects corrupted data words when

when read back

• Data words with errors have a much

longer read latency

• RAMBleed only requires the detection of

bit flips

ECC

24

• Set flippable bit to 1

• Hammering flips it to zero

• ECC corrects the bit flip so it always returns a 1

• Large read latency indicates bit flip

0

0Row 2

Row 0

Row 1

8KiB

10

Flippable bit

ECC

0

1

25

Impact

• Rowhammer no longer restricted to integrity

– Confidentiality

• Works against server ECC memory

• DRAM is shared by everything

– Problem extends beyond crypto keys

• Mitigations deployed by OpenSSH and Linux

• Rowhammer discovered in 2014

• Defenses built without even understanding that

Rowhammer affects confidentiality!

ECC

26
26

Crypto

Operating

System/Architecture

DRAM

Analog

Secure Entropy Generation
[IEEE S&P’20]

Chrome Password Check
[USENIX Security’23]

Post-Quantum Crypto KEMs
[CCS’22]

CacheOut
[IEEE S&P’21]

Spectre+Rowhammer
[IEEE S&P’22]

RAMBleed
[IEEE S&P’20]

Acoustic Eavesdropping
[IEEE S&P’19]

OS Availability Attacks
[IEEE S&P’18]

SGAxe
[Current]

Kernel Hammer
[Current]

My Work

CacheOut

27

Caching 101

27

28

• Caches are a great performance optimization

• Shared across security domains

– Kernel

– Javascript running in browser

• Can also be a source of side-channel leakage!

– Timing difference reveals presence in cache

29

Cache Side-Channel Cache Lines

Attacker VictimRead (Fast)

Read (Fast)

Read (Fast)

Read (Slow)

Read (Fast)

Attacker learns Victim’s memory access pattern!

30

Speculative Execution

char probe[256*4096]

clflush(ptr);

secret = *ptr;

y = secret * 4096;

x = probe[y];

Retired

Pending

Squashed

31

Speculative Execution

char probe[256*4096]

clflush(ptr);

secret = *ptr;

y = secret * 4096;

x = probe[y];

Retired

Pending

Squashed

Speculatively Executed

Speculative Execution leaves footprints in the cache!

32

Attacker speculatively reads across
security domains!

33

Speculative Execution

char probe[256*4096]

clflush(ptr);

evict_to_lfb();

secret = *ptr;

y = secret * 64;

x = probe[y];

probe[0*64]

probe[1*64]

probe[2*64]

probe[3*64]

probe[4*64]

Retired

Pending

Squashed

secret=3

Attacker learns
secret byte!

34

CacheOut in the News

CacheOut also made a big splash in the news
34

35

CacheOut Examples

35

36

CacheOut Examples

AES and RSA keys
36

37

CacheOut Examples

Neural network weights
37

38

CacheOut Examples

KASLR and kernel stack canaries
38

39

CacheOut Examples

This works across VMs
39

40

CacheOut Examples

We can even target the hypervisor!
40

41

Intel Software Guard eXtensions

Intel SGX allows developers to partition code into enclaves
41

42

Intel Software Guard eXtensions

42

Remote Attestation proves system is genuine

43

Dumping Enclave Memory

43

44

Dumping Enclave Memory

44

45

Intel Software Guard eXtensions

45

All trust relies on this key

46

Attestation Key

With access to the attestation key:

• You can fabricate and sign your own quotes

• Intel can't tell who signed that quote:

– Enhanced Privacy ID (EPID) ensures pseudonymity

– Hacker privacy guaranteed!

• A single compromised key erodes trust in the SGX
ecosystem

• No need for an actual SGX machine to sign quotes:

– Non-Intel machines can use SGX too

46

47

Impact

• New data path for eviction from the cache

through the LFB

– Leaked data across kernel, VMs, and even

Intel SGX boundaries

• Microcode update to mitigate CacheOut

• Invalidate all SGX attestation keys

• Problem with speculation runs deep

– Still works on meltdown proof architectures

49

Crypto

Operating

System/Architecture

DRAM

Analog

Secure Entropy Generation
[IEEE S&P’20]

Chrome Password Check
[USENIX Security’23]

Post-Quantum Crypto KEMs
[CCS’22]

CacheOut
[IEEE S&P’21]

Spectre+Rowhammer
[IEEE S&P’22]

RAMBleed
[IEEE S&P’20]

Acoustic Eavesdropping
[IEEE S&P’19]

OS Availability Attacks
[IEEE S&P’18]

SGAxe
[Current]

Kernel Hammer
[Current]

My Work

50

RSA

• RSA is a public key crypto system

• The main operation is modular
exponentiation, i.e. calculating

 bd (mod n)

• The exponent d is used for decryption and
for digital signatures

• d is secret!

51

Square and Multiply Exponentiation

• Scans d from MSB to LSB

• For clear bits: square-reduce

• For set bits: square-reduce-
multiply-reduce

• The sequence of operation
reveals the secret exponent

52

Password Leak Detection

• Credential stuffing attacks

– Reuse credentials on other services

– ~7% credentials valid after compromise

• Chrome’s Password Leak Detection

– Checks input credentials for

compromise on every login

53

Password Leak Detection

• Privacy Preserving in both directions:
assumes malicious client and malicious
server
– Server learns nothing about Client’s

credentials

– Client learns nothing about the leaked
credential database

• Developed custom protocol:
– Anonymity sets

– Memory-hard hashing

– Private Set Intersection (PSI)

• Leaks at multiple points
– Guess password on first attempt 80% of

the time

– Leaks to a malicious web page

Client Server

5454

Bankofamerica.com

Evil.com

Tab 2

Tab 1

Chrome Browser

JS/WASM

Google’s Password

Leak Server

Password

55

55

Accesses into V
dependent on input

How Scrypt Leaks

• Scrypt is maximally
memory-hard

– Cost scales with memory,
not CPU

– Resistant against cracking
attacks

• Inherently non input-
oblivious

56

Accesses into V

56

• Reality: Prime+Probe
gives very limited view
into the accesses into
V

• only probing 1 cache-
set

• ~8 elements in V map
to a single cache set

57

Access Patterns

57

• Top: 150 traces from custom scrypt implementation

• bottom: single trace (what we get in reality with Chrome)

58

Dictionary Attack

• Score every password in dictionary

– Similarity of the resulting access pattern with that password as input

• Victim inputs randomly chosen password from Rockyou.txt

– 14,341,564 plaintext passwords

– Uniquely identified the password the majority of the time

58

Memory-hard hash functions are not
always suitable for passwords

59

Fixing Chrome

• Worked with Google to fix it

• Constant-time:

– Memory accesses, branches, and execution time cannot be

dependent upon the client’s credentials

• Scrypt is memory-hard

– Inherently not input-oblivious

• Complex tradeoffs

60

Impact

• Other browsers have also implemented their own

password monitors

– Safari, Firefox

– Edge developed their own fully homomorphic

encryption (FHE) based PSI

• New crypto needs to consider hardware security

– Zero Knowledge Proofs (ZK)

– Multi-Party Computation (MPC)

– Post Quantum Cryptography (PQC)

61

Post Quantum Cryptography

• Quantum computers can breach many
popular cryptosystems in use today

• NIST began standardization process in 2016

• We worked with NIST and examined
FrodoKEM

– Third round candidate

• Side-channels enable an end-to-end key
recovery attack!

– Bruteforce session keys in 2 minutes on a
laptop*

– Compromise is difficulty to detect, permanent

Best Paper Honorable
Mention at CCS 2022

62
62

Crypto

Operating

System/Architecture

DRAM

Analog

Secure Entropy Generation
[IEEE S&P’20]

Chrome Password Check
[USENIX Security’23]

Post-Quantum Crypto KEMs
[CCS’22]

CacheOut
[IEEE S&P’21]

Spectre+Rowhammer
[IEEE S&P’22]

RAMBleed
[IEEE S&P’20]

Acoustic Eavesdropping
[IEEE S&P’19]

OS Availability Attacks
[IEEE S&P’18]

SGAxe
[Current]

Kernel Hammer
[Current]

My Work

Questions?

63

Impact

• Post Quantum Crypto has unique considerations

– Vulnerable to failure boosting attacks

– Keys should be verifiable

– Should be rotated

• Selected by BSI: “cryptographically suitable to

protect confidential information on a long-term basis”

• ISO/IEC currently planning on standardizing some

PQC algorithms

– FrodoKEM is one of the three suggestions.

• Post Quantum Cryptography needs to consider

leaky hardware

	Slide 1: Applying Software Side-Channels to Hardware Vulnerabilities
	Slide 2
	Slide 3
	Slide 4: Implications of Side Channels
	Slide 5: My Work
	Slide 6: My Work
	Slide 7
	Slide 8
	Slide 9
	Slide 10: How DRAM works
	Slide 11: Rowhammer for Writing
	Slide 12: Data Dependent Bit Flips
	Slide 13: Memory Layout on DIMM
	Slide 14: Memory Massaging
	Slide 15: Memory Layout on DIMM
	Slide 16: Frame Feng Shui
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Results
	Slide 22: What About Servers?
	Slide 23: RAMBleed on ECC Memory
	Slide 24
	Slide 25: Impact
	Slide 26: My Work
	Slide 27: Caching 101
	Slide 28
	Slide 29: Cache Side-Channel
	Slide 30: Speculative Execution
	Slide 31: Speculative Execution
	Slide 32
	Slide 33: Speculative Execution
	Slide 34: CacheOut in the News
	Slide 35: CacheOut Examples
	Slide 36: CacheOut Examples
	Slide 37: CacheOut Examples
	Slide 38: CacheOut Examples
	Slide 39: CacheOut Examples
	Slide 40: CacheOut Examples
	Slide 41: Intel Software Guard eXtensions
	Slide 42: Intel Software Guard eXtensions
	Slide 43: Dumping Enclave Memory
	Slide 44: Dumping Enclave Memory
	Slide 45: Intel Software Guard eXtensions
	Slide 46: Attestation Key
	Slide 47: Impact
	Slide 49: My Work
	Slide 50: RSA
	Slide 51: Square and Multiply Exponentiation
	Slide 52: Password Leak Detection
	Slide 53: Password Leak Detection
	Slide 54
	Slide 55: How Scrypt Leaks
	Slide 56: Accesses into V
	Slide 57: Access Patterns
	Slide 58: Dictionary Attack
	Slide 59: Fixing Chrome
	Slide 60: Impact
	Slide 61: Post Quantum Cryptography
	Slide 62: My Work
	Slide 63: Impact

