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Applications

Operating System

Hardware

Physical

Malware

Hardware abstractions leak 
secrets to software!
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Implications of Side Channels

• Secure software systems must 

consider leakage from the hardware

• Very hard to do when we still don’t 

even understand what these attacks 

are capable of

Hardware

Software
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BrowserUnused Cell Unprivileged UserOpenSSH Server

Row 4

Row 3

Row 1

Row 0

Row 2

• OS enforces isolation

• Can we bypass OS and dump 

memory across these boundaries?
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How DRAM works

• Data in row 3 is read

• Entire row is activated and stored in 

Row Buffer

• Forwarded to CPU

Row 4

Row 3

Row 1

Row 0

Row 2

Row Buffer CPU
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Rowhammer for Writing
• Activating a row drains charge from 

nearby capacitors

• Repeated activation of rows causes 
bit flips in nearby rows!

• Attacker that controls values in rows 

1 and 3 writes to victim’s memory in 

row 2

• Rowhammer can be used to write 

across security domains

• RAMBleed aims to read data from 

DRAM

Bit flip!

Row 4

Row 3

Row 1

Row 0

Row 2

Row Buffer CPU
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Data Dependent Bit Flips

• Stripe Pattern: 0-1-0

• Uniform Pattern: 1-1-1

• Detecting bit flips in row 2 reveals 

the likely values in rows 1 and 3

• Data from rows 3 and 1 “bleed” into 

row 2

• How can we use this effect to read 

something usefulBit flip!

No bit 

flip 

Row 4

Row 3

Row 1

Row 0

Row 2

Row Buffer

01

01

= more likely to flip

= less likely to flip
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Memory Layout on DIMM

• How does an unprivileged 

user process locate and 

acquire this memory layout?

• Developed attack on Linux’s 

memory allocator

Row 2

Row 0

Row 1
2MB

Physical
Address
Space
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Memory Massaging
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• DRAMA (Usenix`16) reverse 

engineered DRAM mappings

– Uses low 22 bits to determine bank 

on our memory setup

– Row index formed by bits 18 and 

above

• Suffices to learn low 22 bits of 

physical address

• Need to obtain 2MB 

physically sequential 

memory from unprivileged 

user

• /proc/pagetypeinfo 

– Lists number of available 

blocks of memory for each 

size

– Was world readable at the 

time of publication

2MB

2MB

• Precise method for 

determining the bits is 

described in the paper

Virtual
Address
Space

Physical
Address
Space

Demonstrated that memory allocator state is security 
sensitive

Linux Restricted Access Afterwards
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Memory Layout on DIMM

• Attacker’s memory in desired locations:

• Want SSH server’s RSA keys to land in T0 and T1

• Developed “Frame Feng Shui” to place victim’s pages in frames of attacker’s 

choosing

Row 2

Row 0

Row 1
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Frame Feng Shui

Page Frame CacheAttacker’s Frames Victim’s Frames

    alloc(buffer0);
    alloc(buffer1);

    alloc(secret);

Victim Pseudo Code

S
ta

c
k

X Y

buffer1

secret

buffer0
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• Attacker’s releases T0

• Victim’s Key placed in desired location:

Row 1

Row 2

Row 0
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Row 2

Row 0

Row 1

• Attacker’s memory in desired locations:

• Victim’s Key placed in desired location:
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• Set flippable bit to 1

• Try to read bit above and below

• If it flips, secret bit is 0!

• Was a 0-1-0 stripe pattern before the flip

• Accessing data in A0 activates the cells in the Secret’s page

0

0Row 2

Row 0

Row 1

8KiB

10

Flippable bit
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• Reading the next bit:

• Search memory for a bit flip at desired offset

• Repeat Frame Feng Shui, Hammer, and read another bit

• Repeat for all bits

No bit flip 

Flippable bit

1

Current bit to read
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Results

• Read 68% of a 2048 bit RSA key from 

OpenSSH server 
– Read from DRAM at 0.31 bits/second

– 82% accuracy

• Read out sufficient bits for full key recovery 

in a couple of hours

– With some math tricks
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What About Servers?

?
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RAMBleed on ECC Memory

Row 4

Row 3

Row 1

Row 0

Row 2

Row Buffer

0

0

100 Bit flip!

1

Corrected!

1

• Error-Correcting Code Memory:

• Corrects corrupted data words when 

when read back

• Data words with errors have a much 

longer read latency

• RAMBleed only requires the detection of 

bit flips

ECC
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• Set flippable bit to 1

• Hammering flips it to zero

• ECC corrects the bit flip so it always returns a 1

• Large read latency indicates bit flip

0

0Row 2

Row 0

Row 1

8KiB

10

Flippable bit

ECC

0

1



25

Impact

• Rowhammer no longer restricted to integrity

– Confidentiality

• Works against server ECC memory

• DRAM is shared by everything

– Problem extends beyond crypto keys

• Mitigations deployed by OpenSSH and Linux

• Rowhammer discovered in 2014

• Defenses built without even understanding that 

Rowhammer affects confidentiality!

ECC
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Caching 101

27
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• Caches are a great performance optimization

• Shared across security domains

– Kernel 

– Javascript running in browser

• Can also be a source of side-channel leakage!

– Timing difference reveals presence in cache
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Cache Side-Channel Cache Lines

Attacker VictimRead (Fast)

Read (Fast)

Read (Fast)

Read (Slow)

Read (Fast)

Attacker learns Victim’s memory access pattern!
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Speculative Execution

char probe[256*4096]

clflush(ptr);

secret = *ptr;

y = secret * 4096;

x = probe[y];

Retired

Pending

Squashed
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Speculative Execution

char probe[256*4096]

clflush(ptr);

secret = *ptr;

y = secret * 4096;

x = probe[y];

Retired

Pending

Squashed

Speculatively Executed

Speculative Execution leaves footprints in the cache!
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Attacker speculatively reads across 
security domains!
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Speculative Execution

char probe[256*4096]

clflush(ptr);

evict_to_lfb();

secret = *ptr;

y = secret * 64;

x = probe[y];

probe[0*64]

probe[1*64]

probe[2*64]

probe[3*64]

probe[4*64]

Retired

Pending

Squashed

secret=3

Attacker learns 
secret byte!
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CacheOut in the News

CacheOut also made a big splash in the news
34
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CacheOut Examples

35



36

CacheOut Examples

AES and RSA keys
36
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CacheOut Examples

Neural network weights
37
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CacheOut Examples

KASLR and kernel stack canaries
38



39

CacheOut Examples

This works across VMs
39
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CacheOut Examples

We can even target the hypervisor!
40
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Intel Software Guard eXtensions

Intel SGX allows developers to partition code into enclaves
41
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Intel Software Guard eXtensions

42

Remote Attestation proves system is genuine
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Dumping Enclave Memory

43
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Dumping Enclave Memory

44
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Intel Software Guard eXtensions

45

All trust relies on this key
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Attestation Key

With access to the attestation key:

• You can fabricate and sign your own quotes

• Intel can't tell who signed that quote:

– Enhanced Privacy ID (EPID) ensures pseudonymity

– Hacker privacy guaranteed!

• A single compromised key erodes trust in the SGX 
ecosystem

• No need for an actual SGX machine to sign quotes:

– Non-Intel machines can use SGX too

46
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Impact

• New data path for eviction from the cache 

through the LFB

– Leaked data across kernel, VMs, and even 

Intel SGX boundaries

• Microcode update to mitigate CacheOut

• Invalidate all SGX attestation keys

• Problem with speculation runs deep

– Still works on meltdown proof architectures
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RSA

• RSA is a public key crypto system

• The main operation is modular
exponentiation, i.e. calculating

 bd (mod n)

• The exponent d is used for decryption and 
for digital signatures

• d is secret!
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Square and Multiply Exponentiation

• Scans d from MSB to LSB

• For clear bits: square-reduce

• For set bits: square-reduce-
multiply-reduce

• The sequence of operation 
reveals the secret exponent
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Password Leak Detection

• Credential stuffing attacks

– Reuse credentials on other services

– ~7% credentials valid after compromise

• Chrome’s Password Leak Detection

– Checks input credentials for 

compromise on every login
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Password Leak Detection

• Privacy Preserving in both directions: 
assumes malicious client and malicious 
server
– Server learns nothing about Client’s 

credentials

– Client learns nothing about the leaked 
credential database

• Developed custom protocol:
– Anonymity sets

– Memory-hard hashing

– Private Set Intersection (PSI)

• Leaks at multiple points
– Guess password on first attempt 80% of 

the time

– Leaks to a malicious web page

Client Server
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Bankofamerica.com

Evil.com

Tab 2

Tab 1

Chrome Browser

JS/WASM

Google’s Password 

Leak Server

Password
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Accesses into V
dependent on input 

How Scrypt Leaks

• Scrypt is maximally 
memory-hard

– Cost scales with memory, 
not CPU

– Resistant against cracking 
attacks

• Inherently non input-
oblivious
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Accesses into V

56

• Reality: Prime+Probe 
gives very limited view 
into the accesses into 
V

• only probing 1 cache-
set

• ~8 elements in V map 
to a single cache set
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Access Patterns

57

• Top: 150 traces from custom scrypt implementation

• bottom: single trace (what we get in reality with Chrome)
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Dictionary Attack

• Score every password in dictionary

– Similarity of the resulting access pattern with that password as input

• Victim inputs randomly chosen password from Rockyou.txt

– 14,341,564 plaintext passwords

– Uniquely identified the password the majority of the time

58

Memory-hard hash functions are not 
always suitable for passwords
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Fixing Chrome

• Worked with Google to fix it

• Constant-time:

– Memory accesses, branches, and execution time cannot be 

dependent upon the client’s credentials

• Scrypt is memory-hard

– Inherently not input-oblivious

• Complex tradeoffs
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Impact

• Other browsers have also implemented their own 

password monitors

– Safari, Firefox

– Edge developed their own fully homomorphic 

encryption (FHE) based PSI

• New crypto needs to consider hardware security

– Zero Knowledge Proofs (ZK)

– Multi-Party Computation (MPC)

– Post Quantum Cryptography (PQC)
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Post Quantum Cryptography

• Quantum computers can breach many 
popular cryptosystems in use today

• NIST began standardization process in 2016

• We worked with NIST and examined 
FrodoKEM

– Third round candidate

• Side-channels enable an end-to-end key 
recovery attack!

– Bruteforce session keys in 2 minutes on a 
laptop*

– Compromise is difficulty to detect, permanent

Best Paper Honorable 
Mention at CCS 2022
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Impact

• Post Quantum Crypto has unique considerations

– Vulnerable to failure boosting attacks

– Keys should be verifiable

– Should be rotated 

• Selected by BSI: “cryptographically suitable to 

protect confidential information on a long-term basis”

• ISO/IEC currently planning on standardizing some 

PQC algorithms

– FrodoKEM is one of the three suggestions.

• Post Quantum Cryptography needs to consider 

leaky hardware
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