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Shrink TCB. Why?

• Software bugs
• SMM-based rootkits
• Xen 150K LOC, 40+ vulnerabilities per year
• Monolithic kernel, e.g., Linux, 17M LOC, 100+ vulnerabilities per

year

• Remote Computing
• Remote computer and software stack owned by an 

untrusted party
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Secure Remote Computing

• Example: DNA Analysis
Remote Computer 

managed by untrusted 
infrastructure provider

Software Provider 
Data Owner

Private data

Private result

How can I keep my data private without trusting the host
OS/hypervisor/SMM?



Software Solution

• Homomorphic Encryption
• 4 to 5 orders of magnitude slower than 

computing on unencrypted data at best
• Infeasible at worst

Remote Computer 
managed by untrusted 
infrastructure provider

Software Provider 
Data Owner

Enc( f(x) )

Enc(x); Function f
F’( Enc(x) )
= Enc(f(x))

• Performance? Accelerators?
e.g., F1: A Fast and Programmable Accelerator for Fully Homomorphic Encryption; Axel Feldmann, Nikola Samardzic et al. MICRO’21



Hardware Solution

• Move TCB to Hardware …
Remote Computer 

managed by untrusted 
infrastructure provider

Software Provider 
Data Owner

Enc(x); Function f

Enc( f(x) )

Container runs 
trusted software

1. Decrypt to get x
2. Compute f(x)
3. Encrypt f(x)



Outline

• Understand the threat model: privileged SW
attacks

• Understand how to mitigate these threats



Privileged Software Attacks
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Launch Time

./helloworld

• Operations at launch time:
• Create a process (PID, status, etc.)
• Create a virtual address space: allocate memory for stack, heap, 

code region, set up the page tables
• Setup file descriptor for input and output
• Load the binary into the code region, and linked library if needed
• Transfer the control to user space



CPU Abstraction

• Expose to users threads, rather than physical cores
• Achieve via context switch and interrupt handling

• Switch from user space to kernel space
• Remember the current PC
• Jump to kernel code: perform a sequence of save operations

• Save general purpose registers content into an object associated with the current thread
• Save system registers, including page table root address (CR3 in X86)

• Based on the interrupt type, decide what to do
• Switch back to user space

• Restore all the registers: general-purpose + system registers
• Jump back to the saved PC



Virtual Memory Abstraction
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What can a privileged software attacker do?

• A non-comprehensive list
• Modify the code to be executed
• Monitor the whole execution process and data in register and in memory
• Modify data in register and memory
• Intercept IO, eavesdrop and tamper with the communication
• ……
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Protection Granularity & TCB Size
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SGX Enclave Programming Model

• Examples from: https://github.com/intel/linux-sgx

create_enclave

initialize_enclave

……. 

destroy_enclave

App Enclave

ecall

ocall



Security Tasks

• How do we ensure the runtime execution follows our expectation 
(confidentiality and integrity of the execution)?

• How do we ensure the enclave code is the code that we want to 
execute? (code integrity during initialization)

• DRAM security? How to deal with Rowhammer and Coldboot attacks? 



Intel SGX Overview

• Enclave code/data map to PRM; Different enclaves access their own 
memory region
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Intel SGX Address Translation Overview
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Malicious Address Translation #1

Virtual Address Space (Programmer's View)

Physical Address Space
(limited by DRAM size)

VA PA4KB

Enclave Range

4KB

4KB

Processor
Reserved 

Memory (PRM)

4KB

Page Table per process



Malicious Address Translation #2
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Malicious Address Translation #2
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Malicious Address Translation #4

Need to keep track of 
the page table for 

enclaves by trusted 
hardware/software.



Solution: Inverted Page Table

• Check for security invariant:
• Enclave VA, enclave modePRM
• Non-enclave mode is not allowed access to the PRM at all

• For each page in the PRM, remember the mapping from
<PPN><VPN, Enclave ID>
Keep the reversed page table in PRM, so privilege software cannot modify



Malicious Address Translation #5

A memory mapping attack that does not require modifying the page tables.

Need to bind the 
virtual address 

mapping with the 
page content.



Solution: Page Encryption and Authentication

• Pages are encrypted under different keys
• MAC over enclave ID, VPN, unique key, data, nonce

• Need to prevent replay attacks



Summary: SGX Memory Management

• Untrusted OS handles paging and swapping
• Maintain an inverted page table and check after every address 

translation
Physical page in PRM -> (enclave ID, virtual page number)

• Encrypt/decrypt upon page swap to non-PRM region
(nonce, enclave ID, virtual page number, key, page content)MAC



Remote Attestation

• HW based attestation provides proof that “this is the right 
application executing on an authentic platform” (approach similar to 
secure boot attestation)

HW-signed blob that includes 
enclave identity information

trusted communication channel

EREPORT



Software Guard Extensions (SGX) Security Model
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Software Guard Extensions (SGX) Security Model
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Enclave Measurement

• Hardware generates a cryptographic log of the build process
• Code, data, stack, and heap contents
• Location of each page within the enclave
• Security attributes and enclave capabilities
• Firmware version, hyperthreading

• Enclave identity (MRENCLAVE) is a 256-bit digest of the log that represents the enclave



AaaS 
(Attestation as a Service)

• @SGAxe_AaaS
Will attest to anything tweeted at it

• Signed 100+ quotes within 2 hours
• Blocked by Github

• After the public release of the paper, 
key was still trusted for a whole 
month

• Can’t update TCB quickly because 
SGX users need to install BIOS 
updates

• Hardcoded MRSIGNER prevents 
abuse

Andrew’s

Andrew’s



Additional Security Threats
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Memory Encryption Engine (MEE)

• Confidentiality:
• DATA written to the DRAM cannot be distinguished from random data.

• Integrity + freshness:
• DATA read back from DRAM to LLC is the same DATA that was most recently 

written from LLC to DRAM.

• What attacks can be mitigated?
• Rowhammer?
• Bus-tapping?
• Cold-boot?
• Side-channels on memory accesses?



Confidentiality

• AES 128-CTR mode



Message Authentication Code (MAC)

• MAC provides integrity and 
authentication

• Freshness
• hash = SHA(message || nonce)

• HMAC = enc(hash, key)



Integrity Storage Problem

• For each cache line: {ciphertext + CTR + MAC}
• MAC 56 bits
• CTR 56 bits

• Can we store all the three components off-chip?
• Problem: if store CTR on-chiphigh on-chip storage requirement



Operations on Merkle Tree

• Only need to store the root node on chip
• How do we verify block B1?
• Write to block B3?



Summary

• What can privileged software attackers do?

• Design tradeoffs between TCB size, flexibility, perf overhead, cost, etc.
• Intel SGX, AMD SEV, ARM CCA
• Keystone, Sanctum, Penglai, etc



DRAM Organization: Top-down View

Channel -> DIMM -> Rank -> Bank -> Row/Column



Reverse Engineer the Mapping

• Approach #1: Physical Probe
• Approach #2: Timing Side Channel via Row Buffer



Address Mapping Examples

Pessl et al. DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks. USENIX’16



Rowhammer Attacks



Native Client (NaCl) Sandbox Escape

Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn and Dullien)

• NaCl is a sandbox for running native code (C/C++)
• Runs a “safe” subset of x86, statically verifying an executable
• Use bit flips to make an instruction sequence unsafe!

Example “Safe” Code:

andl $~31, %eax // Truncate address to 32 bits

addq %r15, %rax
//
//

and mask to be 32-byte-aligned.
Add %r15, the sandbox base address.

jmp *%rax // Indirect jump.



Native Client (NaCl) Sandbox Escape

Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn and Dullien)

We can flip bits to allow for (unsafe) non 32-byte-aligned jumps!

Exploited “Safe” Code:

%eaxandl $~31, %ecx // Truncate address to 32 bits

addq %r15, %rax
//
//

and mask to be 32-byte-aligned.
Add %r15, the sandbox base address.

jmp *%rax // Indirect jump.



Kernel Privilege Escalation

What could happen if a user could gain direct write access to a page table?

53



Other Attacks

● Virtual machine takeover
○ Use page de-duplication to corrupt host machine

● OpenSSH attacks
○ Overwrite internal public key with attacker controlled one
○ Read private key directly (RAMBleed)

● Drammer
○ Rowhammer privilege escalation on ARM
○ Utilizes determinism in page allocation to target vulnerable DRAM rows

● Rowhammer.js
○ Remote takeover of a server vulnerable to rowhammer

Without memory integrity, any software-based security mechanism is insecure!



Rowhammer Mitigations?

• Manufacturing “better” chips

• Increasing refresh rate

• Error Correcting Codes

• Targeted row refresh (TRR) - Used in DDR4!

• Retiring vulnerable cells

• Static binary analysis

• User/kernel space isolation in physical memory

cost

Performance, power

cost, power

cost, power, complexity

cost, power, complexity

security



Error Correcting Codes (ECC)

• Basic Idea: Store extra redundant bits to be used in case of a flip!
• Naive Implementation: Store multiple copies and compare
• Actual Implementation: Hamming codes

Hamming codes allow for single-error correction, double error detection 
(aka SECDED)

How about more than 2-bit flips?
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