
Comp 790-184:
Hardware Security and Side-Channels

Lecture 7: Hardware-Supported Trusted
Execution Environments (TEE)
April 3, 2024
Andrew Kwong

Trusted Computing Base (TCB)

Guest OS

App

Hypervisor

SMM (firmware)

Guest OS

Ring 3

Ring 0
Guest OS

App

Guest OS

Trusted

Hardware

Guest OS

App

OS

Ring 3

Ring 0

Hardware

SMM

Ring -1

Ring -2Ring -2

Shrink TCB. Why?

• Software bugs
• SMM-based rootkits
• Xen 150K LOC, 40+ vulnerabilities per year
• Monolithic kernel, e.g., Linux, 17M LOC, 100+ vulnerabilities per

year

• Remote Computing
• Remote computer and software stack owned by an

untrusted party

Guest OS

App

Hypervisor

SMM

Guest OS

Ring 3

Ring 0

Ring -1

Ring -2

Hardware

Secure Remote Computing

• Example: DNA Analysis
Remote Computer

managed by untrusted
infrastructure provider

Software Provider
Data Owner

Private data

Private result

How can I keep my data private without trusting the host
OS/hypervisor/SMM?

Software Solution

• Homomorphic Encryption
• 4 to 5 orders of magnitude slower than

computing on unencrypted data at best
• Infeasible at worst

Remote Computer
managed by untrusted
infrastructure provider

Software Provider
Data Owner

Enc(f(x))

Enc(x); Function f
F’(Enc(x))
= Enc(f(x))

• Performance? Accelerators?
e.g., F1: A Fast and Programmable Accelerator for Fully Homomorphic Encryption; Axel Feldmann, Nikola Samardzic et al. MICRO’21

Hardware Solution

• Move TCB to Hardware …
Remote Computer

managed by untrusted
infrastructure provider

Software Provider
Data Owner

Enc(x); Function f

Enc(f(x))

Container runs
trusted software

1. Decrypt to get x
2. Compute f(x)
3. Encrypt f(x)

Outline

• Understand the threat model: privileged SW
attacks

• Understand how to mitigate these threats

Privileged Software Attacks

Operating Systems

process1

OS Kernel

processNprocess2

Hardware

Processor Memory Disk Network card Display

…

Keyboard

ISA

Application Binary
Interface (ABI)

Launch Time

./helloworld

• Operations at launch time:
• Create a process (PID, status, etc.)
• Create a virtual address space: allocate memory for stack, heap,

code region, set up the page tables
• Setup file descriptor for input and output
• Load the binary into the code region, and linked library if needed
• Transfer the control to user space

CPU Abstraction

• Expose to users threads, rather than physical cores
• Achieve via context switch and interrupt handling

• Switch from user space to kernel space
• Remember the current PC
• Jump to kernel code: perform a sequence of save operations

• Save general purpose registers content into an object associated with the current thread
• Save system registers, including page table root address (CR3 in X86)

• Based on the interrupt type, decide what to do
• Switch back to user space

• Restore all the registers: general-purpose + system registers
• Jump back to the saved PC

Virtual Memory Abstraction

12

Virtual Address Space
(Programmer's View)

Physical Address Space
(limited by DRAM size)

4KB
VA

PA

Page Table per process

4KB

4KB

4KB

Process 1

Process 2

Disk

What can a privileged software attacker do?

• A non-comprehensive list
• Modify the code to be executed
• Monitor the whole execution process and data in register and in memory
• Modify data in register and memory
• Intercept IO, eavesdrop and tamper with the communication
• ……

TEE Examples

20232000

IBM 4765 TPM

XOM Aegis
(Stanford) (MIT)

2005 2010 2015 2020

Intel SGX

ARM TrustZone

Sanctum
(MIT)

Phantom
(Berkeley)

Ascend

Bastion (MIT)

(Princeton)

Intel TDX

AMD SEV ARM CCA

(Berkeley) Penglai
(SJTU)

CURE
Keystone(TU Darmstadt)

Protection Granularity & TCB Size
enclave

Guest OS

App

Hypervisor

Ring -2 SMM

Guest OS

Ring 3

Ring 0

Ring -1

Hardware

Guest OS

App

Hypervisor

Ring -2 SMM

Guest OS

Ring 3

Ring 0

Ring -1

Hardware

AMD SEV

App

Guest OS

Hypervisor

Ring -2 SMM

Ring 3

Ring 0

Ring -1

Hardware

Intel SGX

Trusted

App

Gu
e

st OS

Ring 3

Ring 0

Hardware

Arm TrustZone

SMM

SGX Enclave Programming Model

• Examples from: https://github.com/intel/linux-sgx

create_enclave

initialize_enclave

…….

destroy_enclave

App Enclave

ecall

ocall

Security Tasks

• How do we ensure the runtime execution follows our expectation
(confidentiality and integrity of the execution)?

• How do we ensure the enclave code is the code that we want to
execute? (code integrity during initialization)

• DRAM security? How to deal with Rowhammer and Coldboot attacks?

Intel SGX Overview

• Enclave code/data map to PRM; Different enclaves access their own
memory region

Guest OS

App

Hypervisor

SMM

Guest OS

Ring 3

Ring 0

Ring -1

Ring -2

Hardware

Enclave

Processor Reserved
Memory (PRM)

Intel SGX Address Translation Overview

Virtual Address Space (Programmer's View)

Physical Address Space
(limited by DRAM size)

VA PA4KB

Enclave Range

4KB

4KB

Processor
Reserved

Memory (PRM)

4KB

Page Table per process

Malicious Address Translation #1

Virtual Address Space (Programmer's View)

Physical Address Space
(limited by DRAM size)

VA PA4KB

Enclave Range

4KB

4KB

Processor
Reserved

Memory (PRM)

4KB

Page Table per process

Malicious Address Translation #2

Virtual Address Space (Programmer's View)

Physical Address Space
(limited by DRAM size)

VA PA4KB

Enclave Range

4KB

4KB

4KB

Processor
Reserved

Memory (PRM)

4KB

Page Table per process

Malicious Address Translation #2

Virtual Address Space (Programmer's View)

Physical Address Space
(limited by DRAM size)

VA PA4KB

Enclave Range

4KB

4KB

4KB

Processor
Reserved

Memory (PRM)

4KB

Page Table per process

Different enclave

Malicious Address Translation #4

Need to keep track of
the page table for

enclaves by trusted
hardware/software.

Solution: Inverted Page Table

• Check for security invariant:
• Enclave VA, enclave modePRM
• Non-enclave mode is not allowed access to the PRM at all

• For each page in the PRM, remember the mapping from
<PPN><VPN, Enclave ID>
Keep the reversed page table in PRM, so privilege software cannot modify

Malicious Address Translation #5

A memory mapping attack that does not require modifying the page tables.

Need to bind the
virtual address

mapping with the
page content.

Solution: Page Encryption and Authentication

• Pages are encrypted under different keys
• MAC over enclave ID, VPN, unique key, data, nonce

• Need to prevent replay attacks

Summary: SGX Memory Management

• Untrusted OS handles paging and swapping
• Maintain an inverted page table and check after every address

translation
Physical page in PRM -> (enclave ID, virtual page number)

• Encrypt/decrypt upon page swap to non-PRM region
(nonce, enclave ID, virtual page number, key, page content)MAC

Remote Attestation

• HW based attestation provides proof that “this is the right
application executing on an authentic platform” (approach similar to
secure boot attestation)

HW-signed blob that includes
enclave identity information

trusted communication channel

EREPORT

Software Guard Extensions (SGX) Security Model

User Space

OS Kernel

V M M

SMM

RAM HW CPU

Enclave Attestation

Remote
Client

Software Guard Extensions (SGX) Security Model

CPU

Enclave Attestation

Remote
Client

quote

Takeaway: trust
is based on the
EPID key

Enhanced Privacy ID

 IAS

Enclave Measurement

• Hardware generates a cryptographic log of the build process
• Code, data, stack, and heap contents
• Location of each page within the enclave
• Security attributes and enclave capabilities
• Firmware version, hyperthreading

• Enclave identity (MRENCLAVE) is a 256-bit digest of the log that represents the enclave

AaaS
(Attestation as a Service)

• @SGAxe_AaaS
Will attest to anything tweeted at it

• Signed 100+ quotes within 2 hours
• Blocked by Github

• After the public release of the paper,
key was still trusted for a whole
month

• Can’t update TCB quickly because
SGX users need to install BIOS
updates

• Hardcoded MRSIGNER prevents
abuse

Andrew’s

Andrew’s

Additional Security Threats

core
L1/L2

core
L1/L2

LLC

…

System Bus (logically)

• DRAM attacks: Rowhammer, Coldboot attacks

Processor Chip (socket) Processor Chip (socket)

core
L1/L2

core
L1/L2

LLC

…

Memory (DRAM) other I/O DevicesNon-volatile
storage device

Integrated
Memory
Controller

Memory Encryption Engine (MEE)

• Confidentiality:
• DATA written to the DRAM cannot be distinguished from random data.

• Integrity + freshness:
• DATA read back from DRAM to LLC is the same DATA that was most recently

written from LLC to DRAM.

• What attacks can be mitigated?
• Rowhammer?
• Bus-tapping?
• Cold-boot?
• Side-channels on memory accesses?

Confidentiality

• AES 128-CTR mode

Message Authentication Code (MAC)

• MAC provides integrity and
authentication

• Freshness
• hash = SHA(message || nonce)

• HMAC = enc(hash, key)

Integrity Storage Problem

• For each cache line: {ciphertext + CTR + MAC}
• MAC 56 bits
• CTR 56 bits

• Can we store all the three components off-chip?
• Problem: if store CTR on-chiphigh on-chip storage requirement

Operations on Merkle Tree

• Only need to store the root node on chip
• How do we verify block B1?
• Write to block B3?

Summary

• What can privileged software attackers do?

• Design tradeoffs between TCB size, flexibility, perf overhead, cost, etc.
• Intel SGX, AMD SEV, ARM CCA
• Keystone, Sanctum, Penglai, etc

DRAM Organization: Top-down View

Channel -> DIMM -> Rank -> Bank -> Row/Column

Reverse Engineer the Mapping

• Approach #1: Physical Probe
• Approach #2: Timing Side Channel via Row Buffer

Address Mapping Examples

Pessl et al. DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks. USENIX’16

Rowhammer Attacks

Native Client (NaCl) Sandbox Escape

Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn and Dullien)

• NaCl is a sandbox for running native code (C/C++)
• Runs a “safe” subset of x86, statically verifying an executable
• Use bit flips to make an instruction sequence unsafe!

Example “Safe” Code:

andl $~31, %eax // Truncate address to 32 bits

addq %r15, %rax
//
//

and mask to be 32-byte-aligned.
Add %r15, the sandbox base address.

jmp *%rax // Indirect jump.

Native Client (NaCl) Sandbox Escape

Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn and Dullien)

We can flip bits to allow for (unsafe) non 32-byte-aligned jumps!

Exploited “Safe” Code:

%eaxandl $~31, %ecx // Truncate address to 32 bits

addq %r15, %rax
//
//

and mask to be 32-byte-aligned.
Add %r15, the sandbox base address.

jmp *%rax // Indirect jump.

Kernel Privilege Escalation

What could happen if a user could gain direct write access to a page table?

53

Other Attacks

● Virtual machine takeover
○ Use page de-duplication to corrupt host machine

● OpenSSH attacks
○ Overwrite internal public key with attacker controlled one
○ Read private key directly (RAMBleed)

● Drammer
○ Rowhammer privilege escalation on ARM
○ Utilizes determinism in page allocation to target vulnerable DRAM rows

● Rowhammer.js
○ Remote takeover of a server vulnerable to rowhammer

Without memory integrity, any software-based security mechanism is insecure!

Rowhammer Mitigations?

• Manufacturing “better” chips

• Increasing refresh rate

• Error Correcting Codes

• Targeted row refresh (TRR) - Used in DDR4!

• Retiring vulnerable cells

• Static binary analysis

• User/kernel space isolation in physical memory

cost

Performance, power

cost, power

cost, power, complexity

cost, power, complexity

security

Error Correcting Codes (ECC)

• Basic Idea: Store extra redundant bits to be used in case of a flip!
• Naive Implementation: Store multiple copies and compare
• Actual Implementation: Hamming codes

Hamming codes allow for single-error correction, double error detection
(aka SECDED)

How about more than 2-bit flips?

	Comp 790-184:�Hardware Security and Side-Channels��
	Trusted Computing Base (TCB)
	Shrink TCB. Why?
	Secure Remote Computing
	Software Solution
	Hardware Solution
	Outline
	Privileged Software Attacks
	Operating Systems
	Launch Time
	CPU Abstraction
	Virtual Memory Abstraction
	What can a privileged software attacker do?
	TEE Examples
	Protection Granularity & TCB Size
enclave
	SGX Enclave Programming Model
	Security Tasks
	Intel SGX Overview
	Intel SGX Address Translation Overview
	Malicious Address Translation #1
	Malicious Address Translation #2
	Malicious Address Translation #2
	Malicious Address Translation #4
	Solution: Inverted Page Table
	Malicious Address Translation #5
	Solution: Page Encryption and Authentication
	Summary: SGX Memory Management
	Remote Attestation
	Software Guard Extensions (SGX) Security Model
	Software Guard Extensions (SGX) Security Model
	Enclave Measurement
	AaaS (Attestation as a Service)
	Additional Security Threats
	Memory Encryption Engine (MEE)
	Confidentiality
	Message Authentication Code (MAC)
	Integrity Storage Problem
	Operations on Merkle Tree
	Summary
	DRAM Organization: Top-down View
	Reverse Engineer the Mapping
	Address Mapping Examples
	Rowhammer Attacks
	Native Client (NaCl) Sandbox Escape
	Native Client (NaCl) Sandbox Escape
	Kernel Privilege Escalation
	Other Attacks
	Rowhammer Mitigations?
	Error Correcting Codes (ECC)
	End slide

