Comp 790-184:
Hardware Security and Side-Channels

Trusted Computing Base (TCB)

Ring 3
App App
Ring 3
App
Ring 0
Guest OS Guest OS
Ring 0 .
Ring -1 I Hypervisor I
Ring -2 SMM Ring -2 SMM (firmware

Hardware

Hardware

Shrink TCB. Why?

« Software bugs
e SMM-based rootkits Ring 3
* Xen 150K LOC, 40+ vulnerabilities per year App

* Monolithic kernel, e.g., Linux, 17M LOC, 100+ vulnerabilities per
Guest OS

Ring -1 I Hypervisor I

* Remote Computing
* Remote computer and software stack owned by an

Ring -2 I SMM I

araware

Secure Remote Computing

adWS$S

\/‘7

. Remote Computer
* Example: DNA Analysis managed by untrusted

infrastructure provider
Q Private data

Software Provider Private result

Data Owner

How can | keep my data private without trusting the host
OS/hypervisor/SMM?

Software Solution

* Homomorphic Encryption Remote Computer

* 4 to 5 orders of magnitude slower than _m?nafedtbv untrusjged
computing on unencrypted data at best Infrastructure provider

* Infeasible at worst

Q Enc(x); Function f
F’(Enc(x))

Enc(f(x))

Software Provider
Data Owner

* Performance? Accelerators?
e.g., F1: A Fast and Programmable Accelerator for Fully Homomorphic Encryption; Axel Feldmann, Nikola Samardzic et al. MICRO’21

Hardware Solution

Remote Computer
* Move TCB to Hardware ... managed by untrusted

infrastructure provider

Q Enc(x); Function f Container runs

Q trusted software

1. Decrypt to get x
Software Provider Enc(f(x)) 2. Compute f(x)
Data Owner 3. Encrypt f(x)

Outline

* Understand the threat model: privileged SW
attacks

e Understand how to mitigate these threats

Privileged Software Attacks

Operating Systems

rocess rocess rocess
P . P . P . Application Binary
Interface (ABI)
OS Kernel
ISA
Hardware
Processor = Memory Disk Network card Display Keyboard

Launch Time

./helloworld

e Operations at launch time:
* Create a process (PID, status, etc.)

* Create a virtual address space: allocate memory for stack, heap, 55
code region, set up the page tables

* Setup file descriptor for input and output &
* Load the binary into the code region, and linked library if needed GS
* Transfer the control to user space 55

CPU Abstraction

* Expose to users threads, rather than physical cores
* Achieve via context switch and interrupt handling

* Switch from user space to kernel space
* Remember the current PC
e Jump to kernel code: perform a sequence of save operations

* Save general purpose registers content into an object associated with the current thread GS
» Save system registers, including page table root address (CR3 in X86)

e Based on the interrupt type, decide what to do

 Switch back to user space

* Restore all the registers: general-purpose + system registers GS
e Jump back to the saved PC GS

Virtual Memory Abstraction

Process 1

Process 2

Virtual Address Space

4KB

Page Table per process

VA
PA

4KB

Physical Address Space
(limited by DRAM size)

4KB

4KB

295

What can a privileged software attacker do?

* A non-comprehensive list
* Modify the code to be executed
Monitor the whole execution process and data in register and in memory
Modify data in register and memory
Intercept |0, eavesdrop and tamper with the communication

TEE Examples

IBM 4765

XgQM
(Stanford) (MIT)

ARM TrustZa

TPM

Aegis

ne

Bast|on
(Princgton)

Intel SGX

Ascend
San
(MIT) (

Phantom
(Berkeley

tum
IT)

AMD p

Keyst
(Berk

Intel TDX
CEV ARM CCA

CURE

One(TU Darmstadt)

eley) Penglai
(SJITU)

he

2(15

Z(IO

Z(IS

I ° >
2020 2023

Protection Granularity & TCB Size

enclave

Ring 3 . Ring 3 Ap Ring 3
App App
Ring 3
Ring 0 - Ring 0 Ring 0
Guest OS Guest OS Guest OS
.|
Ring 0
Ring -1 I Hypervisor I & Ring -1 I Hypervisor I Ring -1 I Hypervisor I
Ring -2 I SMM Ring -2 I SMM Ring -2 I SMM I

Hardware Hardware Hardware Hardware

Arm TrustZone Intel SGX AMD SEV

SGX Enclave Programming Model

e Examples from: https://github.com/intel/linux-sgx

App Enclave

create_enclave ecall

initialize_enclave

destroy_enclave

Security Tasks

* How do we ensure the runtime execution follows our expectation
(confidentiality and integrity of the execution)?

e How do we ensure the enclave code is the code that we want to
execute? (code integrity during initialization)

* DRAM security? How to deal with Rowhammer and Coldboot attacks?

Intel SGX Overview

* Enclave code/data map to PRM; Different enclaves access their own
memory region

Ring 3 App
Ring 0
Guest OS
Hes Guest OS\ \

R' 1 1 1

g - Hypervisor \ \ \
Ring -2 Y ‘\ — Processor Reserved

Memory (PRM)
Hardware ‘/

Intel SGX Address Translation Overview

Virtual Address Space (Programmer's View)

Physical Address Space
Page Table per process (limited by DRAM size)

4KB h ia
4KB

Enclave Range

Processor

Reserved
4KB Memory (PRM)

4KB

Malicious Address Translation #1

Virtual Address Space (Programmer's View)

Physical Address Space
Page Table per process (limited by DRAM size)

VA PA

4KB

4KB

Enclave Range
Processor

Reserved
4KB Memory (PRM)

4KB

Malicious Address Translation #2

Virtual Address Space (Programmer's View)

Physical Address Space
Page Table per process (limited by DRAM size)

4KB h -
4KB

4KB

Enclave Range
Processor

Reserved
4KB Memory (PRM)

4KB

Malicious Address Translation #2

Virtual Address Space (Programmer's View)

Physical Address Space

Page Table per process (limited by DRAM size)
o k -
4KB
4KB
Enclave Range

4KB Memory (PRM)
4KB

Malicious Address Translation #4

Application code written by Application code seen by CPU

developer
Need to keep track of

the page table for

—— PASS - PASS - enclaves by trusted
§ hardware/software.
[:f—————‘FAl | P —— —FAIL —
0x41000 errorOut () : Ei OX41OOO§E ;;errorOut():
write error H H ilwrite error
return H § il return :)
—> 0x42000 disclose(): ;j’>OX4200055 §§disclose():
write data P ¥ lwrite data

return P 3 ‘| return
. Virtual i Page i
. addresses :: tables i DRAM pages

Solution: Inverted Page Table

* Check for security invariant:
* Enclave VA, enclave mode = PRM
* Non-enclave mode is not allowed access to the PRM at all

* For each page in the PRM, remember the mapping from
<PPN> =>» <VPN, Enclave ID>
Keep the reversed page table in PRM, so privilege software cannot modify

Malicious Address Translation #5

A memory mapping attack that does not require modifying the page tables.

Page tables and DRAM before swapping

Virtual

Physical

Contents

0x41000

0x19000

errorOut

0x42000

0x1A000

disclose

:

——— o -

e e e e ——

errorOut

Page tables and DRAM after swapping

Virtual

Physical

Contents

0x41000

0x19000

disclose

1
|
-

» disclose

- — ———
-_— - ———

A

0x42000

0x1A000

errorQOut

O

A

Need to bind the
virtual address
mapping with the
page content.

Solution: Page Encryption and Authentication

* Pages are encrypted under different keys
* MAC over enclave ID, VPN, unique key, data, nonce
* Need to prevent replay attacks

Summary: SGX Memory Management

e Untrusted OS handles paging and swapping

* Maintain an inverted page table and check after every address
translation
Physical page in PRM -> (enclave ID, virtual page number)

* Encrypt/decrypt upon page swap to non-PRM region
(nonce, enclave ID, virtual page number, key, page content) = MAC

Remote Attestation

* HW based attestation provides proof that “this is the right
application executing on an authentic platform” (approach similar to
secure boot attestation)

HW-signed blob that includes
enclave identity information

Remote Platform

Client Application

'~
Enclave . EREPORT

trusted communication channel

Software Guard Extensions (SGX) Security Model

Remote
Client

Software Guard Extensions (SGX) Security Model

Takeaway: trust
is based on the
EPID key

Remote
Client

Enclave Measurement

* Hardware generates a cryptographic log of the build process
* Code, data, stack, and heap contents
* Location of each page within the enclave
* Security attributes and enclave capabilities
* Firmware version, hyperthreading

* Enclave identity (MRENCLAVE) is a 256-bit digest of the log that represents the enclave
jead Teexteno - feexteno TeapD |,
l Metzg:ta I LQ%IQ @@ lﬁm Location I Msfzgzta l

|
|
1
|
|
|
|
D
|
|
|
|
|

S———

MRENCLAVE® e & MRENCLAVE! e B MRENCLAVE?

. SHA-256
B MRENCLAVE3 & MRENCLAVE#

|

SGAxe-Bot @SGAxe_AaaS - Jun9
Aa a S Replying to @bascule
Your quote "Honest Andrew’s Jsed Cars, Certificates, and Genuine Intel SGX

(Atte Stat I O n a S a S e rV| C e) Enclaves" has been signed. Your quote and instructions on how to verify it can

be found at gist.github.com/1afd7a8efa3e0e.... Visit sgaxe.com for more

information.
Will attest to anything tweeted at it
EPID Group ID: 0xb5 0x0b 0x00 0x00
Signed 100+ guotes within 2 hours Extended Group ID: 0x@0 0x00 0x00 ©x00
PCE SVN: 0x0a 0x00
° 1 QE SVN: 0x0b 0x00
BIOCkEd by G Ith b b MRSIGNER: _SGAxe: How SGX Fails in Practice
. MRENCLAVE: 1 When good enclaves go bad @SGAxe_AaaS
After the pu blic release of the paper, CPU SUN: Ox0e x0e 0x02 Ox05 0xO1 Ox80 X0 0X00
. Ox00 Ox00 0x00 Ox00 Ox00 OxOO0 Ox00 Ox00

key was still trusted for a whole Basename: // oxb4 0xd7 Gxed 6xf8 0x5a Oxle Bxcc Oxfe

0x92 0xc9 Oxcc Ox4b 0x21 0x28 Oxf9 Ox8a
Mo nth 0xd2 0xc3 0x75 0x9f Oxae Oxb5 Ox3f 0x5a

0xfb Oxb6 ©x98 Oxa8 Ox8f 0x53 Oxf8 Ox23
Ca n’t u pd ate TC B q u | Ckly beca use Repoyt Data: Hones Andrew’s sed Cars, Certificates, and Gedtiihe fitef SGX'E
SG X users nee d to i N Sta I I B I OS This quote has been signed for you by a genuine Intel SGX enclave.

SGAxe-Bot's gists x Motifications / Twitter X | CacheOut X GitHub x

u pd ates &« ¢ o © | a8 github.com
H a r‘d COd ed IVI RS I G N E R p reve nts O r t Pull requests Issues Marketplace Explore
a b u S e Your account has been flagged.

Because of that, your profile is hidden from the public. If you believe this is a mistake, contact support to have your account status reviewed.

Additional Security Threats

e DRAM attacks: Rowhammer, Coldboot attacks

Processor Chip (socket)

Processor Chip (socket)

core core core core
Integrated
Memory
Controller \- LLC LLC
System Bus (logically)
< >
Non-volatile

Memory (DRAM) other I/O Devices

storage device

Memory Encryption Engine (MEE)

* Confidentiality:
* DATA written to the DRAM cannot be distinguished from random data.

* Integrity + freshness:

* DATAread back from DRAM to LLC is the same DATA that was most recently
written from LLC to DRAM.

* What attacks can be mitigated?
* Rowhammer?
e Bus-tapping?
e Cold-boot?
e Side-channels on memory accesses?

Confidentiality

e AES 128-CTR mode

Nonce Counter Nonce Counter Nonce Counter
c59bcf35.. 00000000 c59bcf35.. 00000001 c59bcf35.. 00000002

block cipher
encryption

block cipher
encryption

block cipher

Key encryption

Key — Key —

Plaintext ———— Plaintext —— Plaintext ——
[TTTTTTTITI71T1] (TTTTITTTTITT] OTTTTITTIIT11T1]

IITTIITTTTT] I TTIITTTTT] ITTITTTTTTT]
Ciphertext Ciphertext Ciphertext

Counter (CTR) mode encryption

Message Authentication Code (MAC)

* MAC provides integrity and

authentication
| MESSAGE | | MESSAGE |
Key (K0 |aigoricnm| T paag] | < " > |nigorithm
| T |
mad MAE >3« AT
v
MAC: If the same MAC is found: then
¢ F res h ness Message Authentication Code it:fegnrieti/SSr?:cilerUthentic and
Else: something is not right.
* hash = SHA (message || nonce)

* HMAC = enc (hash, key)

Integrity Storage Problem

* For each cache line: {ciphertext + CTR + MAC}
* MAC 56 bits
* CTR 56 bits

e Can we store all the three components off-chip?

* Problem: if store CTR on-chip = high on-chip storage requirement

Operations on Merkle Tree

* Only need to store the root node on chip
 How do we verify block B1?

. Secure processor (trusted)
e Write to block B3?
root = Hash(f,, | | f,,,) root
fi= Hash(gy | | 83.1) f, f,
g;= Hash(hy || hy,,) 8o 81 8> 83
h;= Hash(B) hy | | hy h, | | h; hy | | hs he | | hy

| | | | | | | |
By | | B, | |B,| | Bs B, | [Bs| [Bs| | B,

Summary

* What can privileged software attackers do?

* Design tradeoffs between TCB size, flexibility, perf overhead, cost, etc.
* Intel SGX, AMD SEV, ARM CCA
* Keystone, Sanctum, Penglai, etc

DRAM Organization: Top-down View

Memory channel

Memory channel ro W-b Uffer

Channel -> DIMM -> Rank -> Bank -> Row/Column

Reverse Engineer the Mapping

e Approach #1: Physical Probe
e Approach #2: Timing Side Channel via Row Buffer

row-buffer

row 4
row 3
row 2
row 1
row 0

Address Mapping Examples

BAO « P BAO ¢ D
BA1 « Bt BAT ¢ PR
e e
BA2 ¢ gy Rank < g}
Rank ¢ | BAZ «—x |

...,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8 , 7 , 6 ,122/21,20,19,18,17,16,15,14,13,12/11,10,9,8, 7,6, ...

Ch. 4 | ch. « Sede Hecd——Bede]
(a) Sandy Bridge — DDR3 [23]. (b) Ivy Bridge / Haswell — DDR3.

Pessl et al. DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks. USENIX'16

Rowhammer Attacks

Native Client (NaCl) Sandbox Escape

NaCl is a sandbox for running native code (C/C++)
Runs a “safe” subset of x86, statically verifying an executable

Use bit flips to make an instruction sequence unsafe!

Example “Safe” Code:

andl $~31, %eax // Truncate address to 32 bits
// and mask to be 32-byte-aligned.

addq %rl5, %rax ;; add %r15, the sandbox base address.
jmp *%rax // Indirect jump.

Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn and Dullien)

Native Client (NaCl) Sandbox Escape

We can flip bits to allow for (unsafe) non 32-byte-aligned jumps!

Exploited “Safe” Code:

andl $~31, pAYS@M // Truncate address to 32 bits
// and mask to be 32-byte-aligned.
addq %rl5, %rax ;; add %ri15, the sandbox base address.

jmp *%rax // Indirect jump.

Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn and Dullien)

Kernel Privilege Escalation

What could happen if a user could gain direct write access to a page table?

63 62 62 51 32
N AisilEbls Physical-Page Base Address
X (This is an architectural limit. A given implementation may support fewer bits.)
31 2 1 9 8 7 6 5 4 3 0
P PIPJU|R
Physical-Page Base Address AVL |[G|AJD|A|C|WR/ |/ P
¥ DTS |W

Figure 5-21. 4-Kbyte PTE—Long Mode

Other Attacks

o Virtual machine takeover
o Use page de-duplication to corrupt host machine
e OpenSSH attacks

o Overwrite internal public key with attacker controlled one
o Read private key directly (RAMBIleed)

e Drammer

o Rowhammer privilege escalation on ARM
o Utilizes determinism in page allocation to target vulnerable DRAM rows
e Rowhammer.js

- Remote takeover of a server vulnerable to rowhammer

Without memory integrity, any software-based security mechanism is insecure!

Rowhammer Mitigations?

Manufacturing “better” chips

Increasing refresh rate
Error Correcting Codes
Targeted row refresh (TRR) - Used in DDR4!

Static binary analysis

User/kernel space isolation in physical memory

Retiring vulnerable cells

Error Correcting Codes (ECC)

Basic Idea: Store extra redundant bits to be used in case of a flip!
Naive Implementation: Store multiple copies and compare
Actual Implementation: Hamming codes

Hamming codes allow for single-error correction, double error detection
(aka SECDED)

How about more than 2-bit flips?

	Comp 790-184:�Hardware Security and Side-Channels��
	Trusted Computing Base (TCB)
	Shrink TCB. Why?
	Secure Remote Computing
	Software Solution
	Hardware Solution
	Outline
	Privileged Software Attacks
	Operating Systems
	Launch Time
	CPU Abstraction
	Virtual Memory Abstraction
	What can a privileged software attacker do?
	TEE Examples
	Protection Granularity & TCB Size
enclave
	SGX Enclave Programming Model
	Security Tasks
	Intel SGX Overview
	Intel SGX Address Translation Overview
	Malicious Address Translation #1
	Malicious Address Translation #2
	Malicious Address Translation #2
	Malicious Address Translation #4
	Solution: Inverted Page Table
	Malicious Address Translation #5
	Solution: Page Encryption and Authentication
	Summary: SGX Memory Management
	Remote Attestation
	Software Guard Extensions (SGX) Security Model
	Software Guard Extensions (SGX) Security Model
	Enclave Measurement
	AaaS (Attestation as a Service)
	Additional Security Threats
	Memory Encryption Engine (MEE)
	Confidentiality
	Message Authentication Code (MAC)
	Integrity Storage Problem
	Operations on Merkle Tree
	Summary
	DRAM Organization: Top-down View
	Reverse Engineer the Mapping
	Address Mapping Examples
	Rowhammer Attacks
	Native Client (NaCl) Sandbox Escape
	Native Client (NaCl) Sandbox Escape
	Kernel Privilege Escalation
	Other Attacks
	Rowhammer Mitigations?
	Error Correcting Codes (ECC)
	End slide

