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Shrink TCB. Why?

« Software bugs
e SMM-based rootkits Ring 3
* Xen 150K LOC, 40+ vulnerabilities per year App

* Monolithic kernel, e.g., Linux, 17M LOC, 100+ vulnerabilities per
Guest OS

Ring -1 I Hypervisor I

* Remote Computing
* Remote computer and software stack owned by an

Ring -2 I SMM I

araware




Secure Remote Computing
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. Remote Computer
* Example: DNA Analysis managed by untrusted

infrastructure provider
Q Private data

Software Provider Private result

Data Owner

How can | keep my data private without trusting the host
OS/hypervisor/SMM?



Software Solution

* Homomorphic Encryption Remote Computer

* 4 to 5 orders of magnitude slower than _m?nafedtbv untrusjged
computing on unencrypted data at best Infrastructure provider

* Infeasible at worst

Q Enc(x); Function f
F’( Enc(x) )

Enc( f(x) )

Software Provider
Data Owner

* Performance? Accelerators?
e.g., F1: A Fast and Programmable Accelerator for Fully Homomorphic Encryption; Axel Feldmann, Nikola Samardzic et al. MICRO’21



Hardware Solution

Remote Computer
* Move TCB to Hardware ... managed by untrusted

infrastructure provider

Q Enc(x); Function f Container runs

Q trusted software

1. Decrypt to get x
Software Provider Enc( f(x) ) 2. Compute f(x)
Data Owner 3. Encrypt f(x)




Outline

* Understand the threat model: privileged SW
attacks

e Understand how to mitigate these threats




Privileged Software Attacks



Operating Systems

rocess rocess rocess
P . P . P . Application Binary
Interface (ABI)
OS Kernel
ISA
Hardware
Processor = Memory Disk Network card Display Keyboard




Launch Time

./helloworld

e Operations at launch time:
* Create a process (PID, status, etc.)

* Create a virtual address space: allocate memory for stack, heap, 55
code region, set up the page tables

* Setup file descriptor for input and output &
* Load the binary into the code region, and linked library if needed GS
* Transfer the control to user space 55



CPU Abstraction

* Expose to users threads, rather than physical cores
* Achieve via context switch and interrupt handling

* Switch from user space to kernel space
* Remember the current PC
e Jump to kernel code: perform a sequence of save operations

* Save general purpose registers content into an object associated with the current thread GS
» Save system registers, including page table root address (CR3 in X86)

e Based on the interrupt type, decide what to do

 Switch back to user space

* Restore all the registers: general-purpose + system registers GS
e Jump back to the saved PC GS



Virtual Memory Abstraction

Process 1

Process 2

Virtual Address Space

4KB

Page Table per process

VA
PA

4KB

Physical Address Space
(limited by DRAM size)

4KB

4KB

295




What can a privileged software attacker do?

* A non-comprehensive list
* Modify the code to be executed
Monitor the whole execution process and data in register and in memory
Modify data in register and memory
Intercept |0, eavesdrop and tamper with the communication
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Protection Granularity & TCB Size

enclave
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.|
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Ring -1 I Hypervisor I & Ring -1 I Hypervisor I Ring -1 I Hypervisor I
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Hardware Hardware Hardware Hardware
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SGX Enclave Programming Model

e Examples from: https://github.com/intel/linux-sgx

App Enclave

create_enclave ecall

initialize_enclave

destroy_enclave




Security Tasks

* How do we ensure the runtime execution follows our expectation
(confidentiality and integrity of the execution)?

e How do we ensure the enclave code is the code that we want to
execute? (code integrity during initialization)

* DRAM security? How to deal with Rowhammer and Coldboot attacks?



Intel SGX Overview

* Enclave code/data map to PRM; Different enclaves access their own
memory region

Ring 3 App
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Guest OS
Hes Guest OS\ \
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g - Hypervisor \ \ \
Ring -2 Y ‘\ — Processor Reserved

Memory (PRM)
Hardware ‘/




Intel SGX Address Translation Overview

Virtual Address Space (Programmer's View)

Physical Address Space
Page Table per process (limited by DRAM size)
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Malicious Address Translation #1

Virtual Address Space (Programmer's View)
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VA PA

4KB

4KB

Enclave Range
Processor

Reserved
4KB Memory (PRM)

4KB




Malicious Address Translation #2

Virtual Address Space (Programmer's View)
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4KB h -
4KB

4KB

Enclave Range
Processor

Reserved
4KB Memory (PRM)

4KB




Malicious Address Translation #2

Virtual Address Space (Programmer's View)

Physical Address Space

Page Table per process (limited by DRAM size)
o k -
4KB
4KB
Enclave Range

4KB Memory (PRM)
4KB




Malicious Address Translation #4

Application code written by Application code seen by CPU

developer
Need to keep track of

the page table for

—— PASS - PASS - enclaves by trusted
§ hardware/software.
[:f—————‘FAl | P —— —FAIL —
0x41000 errorOut () : Ei OX41OOO§E ;;errorOut():
write error H H ilwrite error
return H § il return :)
—> 0x42000 disclose(): ;j’>OX4200055 §§disclose():
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return P 3 ‘| return
. Virtual i Page i
. addresses :: tables i DRAM pages




Solution: Inverted Page Table

* Check for security invariant:
* Enclave VA, enclave mode = PRM
* Non-enclave mode is not allowed access to the PRM at all

* For each page in the PRM, remember the mapping from
<PPN> =>» <VPN, Enclave ID>
Keep the reversed page table in PRM, so privilege software cannot modify



Malicious Address Translation #5

A memory mapping attack that does not require modifying the page tables.

Page tables and DRAM before swapping
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Solution: Page Encryption and Authentication

* Pages are encrypted under different keys
* MAC over enclave ID, VPN, unique key, data, nonce
* Need to prevent replay attacks




Summary: SGX Memory Management

e Untrusted OS handles paging and swapping

* Maintain an inverted page table and check after every address
translation
Physical page in PRM -> (enclave ID, virtual page number)

* Encrypt/decrypt upon page swap to non-PRM region
(nonce, enclave ID, virtual page number, key, page content) = MAC



Remote Attestation

* HW based attestation provides proof that “this is the right
application executing on an authentic platform” (approach similar to
secure boot attestation)

HW-signed blob that includes
enclave identity information

Remote Platform

Client Application

'~
Enclave . EREPORT

trusted communication channel



Software Guard Extensions (SGX) Security Model

Remote
Client




Software Guard Extensions (SGX) Security Model

Takeaway: trust
is based on the
EPID key

Remote
Client




Enclave Measurement

* Hardware generates a cryptographic log of the build process
* Code, data, stack, and heap contents
* Location of each page within the enclave
* Security attributes and enclave capabilities
* Firmware version, hyperthreading

* Enclave identity (MRENCLAVE) is a 256-bit digest of the log that represents the enclave
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Additional Security Threats

e DRAM attacks: Rowhammer, Coldboot attacks

Processor Chip (socket)

Processor Chip (socket)

core core core core
Integrated
Memory
Controller \- LLC LLC
System Bus (logically)
< >
Non-volatile

Memory (DRAM) other I/O Devices

storage device




Memory Encryption Engine (MEE)

* Confidentiality:
* DATA written to the DRAM cannot be distinguished from random data.

* Integrity + freshness:

* DATAread back from DRAM to LLC is the same DATA that was most recently
written from LLC to DRAM.

*  What attacks can be mitigated?
* Rowhammer?
e Bus-tapping?
e Cold-boot?
e Side-channels on memory accesses?



Confidentiality

e AES 128-CTR mode

Nonce Counter Nonce Counter Nonce Counter
c59bcf35.. 00000000 c59bcf35.. 00000001 c59bcf35.. 00000002

block cipher
encryption

block cipher
encryption

block cipher

Key encryption

Key — Key —

Plaintext ———— Plaintext —— Plaintext ——
[TTTTTTTITI71T1] (TTTTITTTTITT] OTTTTITTIIT11T1]

IITTIITTTTT] I TTIITTTTT] ITTITTTTTTT]
Ciphertext Ciphertext Ciphertext

Counter (CTR) mode encryption



Message Authentication Code (MAC)

* MAC provides integrity and

authentication
| MESSAGE | | MESSAGE |
Key (K0 |aigoricnm| T paag] | < " > |nigorithm
| T |
mad MAE >3« AT
v
MAC: If the same MAC is found: then
¢ F res h ness Message Authentication Code it:fegnrieti/SSr?:cilerUthentic and
Else: something is not right.
* hash = SHA (message || nonce)

* HMAC = enc (hash, key)




Integrity Storage Problem

* For each cache line: {ciphertext + CTR + MAC}
* MAC 56 bits
* CTR 56 bits

e Can we store all the three components off-chip?

* Problem: if store CTR on-chip = high on-chip storage requirement




Operations on Merkle Tree

* Only need to store the root node on chip
 How do we verify block B1?

. Secure processor (trusted)
e Write to block B3?
root = Hash(f,, | | f,,,) root
fi= Hash(gy | | 83.1) f, f,
g;= Hash(hy || hy,,) 8o 81 8> 83
h;= Hash(B) hy | | hy h, | | h; hy | | hs he | | hy

| | | | | | | |
By | | B, | |B,| | Bs B, | [Bs| [Bs| | B,




Summary

* What can privileged software attackers do?

* Design tradeoffs between TCB size, flexibility, perf overhead, cost, etc.
* Intel SGX, AMD SEV, ARM CCA
* Keystone, Sanctum, Penglai, etc




DRAM Organization: Top-down View

Memory channel

Memory channel ro W-b Uffer

Channel -> DIMM -> Rank -> Bank -> Row/Column



Reverse Engineer the Mapping

e Approach #1: Physical Probe
e Approach #2: Timing Side Channel via Row Buffer

row-buffer

row 4
row 3
row 2
row 1
row 0




Address Mapping Examples

BAO « P BAO ¢ D
BA1 « Bt BAT ¢ PR
e e
BA2 ¢ gy Rank < g}
Rank ¢ | BAZ «—x |

...,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8 , 7 , 6 , ... ...122/21,20,19,18,17,16,15,14,13,12/11,10,9,8, 7,6, ...

Ch. 4 | ch. « Sede Hecd——Bede]
(a) Sandy Bridge — DDR3 [23]. (b) Ivy Bridge / Haswell — DDR3.

Pessl et al. DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks. USENIX'16



Rowhammer Attacks




Native Client (NaCl) Sandbox Escape

NaCl is a sandbox for running native code (C/C++)
Runs a “safe” subset of x86, statically verifying an executable

Use bit flips to make an instruction sequence unsafe!

Example “Safe” Code:

andl $~31, %eax // Truncate address to 32 bits
// and mask to be 32-byte-aligned.

addq %rl5, %rax  ;; add %r15, the sandbox base address.
jmp *%rax // Indirect jump.

Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn and Dullien)



Native Client (NaCl) Sandbox Escape

We can flip bits to allow for (unsafe) non 32-byte-aligned jumps!

Exploited “Safe” Code:

andl $~31, pAYS@M // Truncate address to 32 bits
// and mask to be 32-byte-aligned.
addq %rl5, %rax  ;; add %ri15, the sandbox base address.

jmp *%rax // Indirect jump.

Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn and Dullien)



Kernel Privilege Escalation

What could happen if a user could gain direct write access to a page table?

63 62 62 51 32
N AisilEbls Physical-Page Base Address
X (This is an architectural limit. A given implementation may support fewer bits.)
31 2 1 9 8 7 6 5 4 3 0
P PIPJU|R
Physical-Page Base Address AVL |[G|AJD|A|C|WR/ |/ P
¥ DTS |W

Figure 5-21. 4-Kbyte PTE—Long Mode



Other Attacks

o Virtual machine takeover
o Use page de-duplication to corrupt host machine
e OpenSSH attacks

o Overwrite internal public key with attacker controlled one
o Read private key directly (RAMBIleed)

e Drammer

o Rowhammer privilege escalation on ARM
o Utilizes determinism in page allocation to target vulnerable DRAM rows
e Rowhammer.js

- Remote takeover of a server vulnerable to rowhammer

Without memory integrity, any software-based security mechanism is insecure!



Rowhammer Mitigations?

Manufacturing “better” chips

Increasing refresh rate
Error Correcting Codes
Targeted row refresh (TRR) - Used in DDR4!

Static binary analysis

User/kernel space isolation in physical memory

Retiring vulnerable cells




Error Correcting Codes (ECC)

Basic Idea: Store extra redundant bits to be used in case of a flip!
Naive Implementation: Store multiple copies and compare
Actual Implementation: Hamming codes

Hamming codes allow for single-error correction, double error detection
(aka SECDED)

How about more than 2-bit flips?
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