Comp 790-184:
Hardware Security and Side-Channels

” | of NORTH C LINA
:__i, at CHAPEL HILL

@ £y 5

FORESHADOW

 What are transient execution attacks?

e How does Meltdown work?

* We will connect the dots between a hardware optimization and a software
optimization.

* How do Spectre and its variations work?

* Let’s try to see through these variations and understand the fundamental
problem.
Slides adapted from Mengjia Yan

ishd.mit.edul

T09L DAd3 WA Plog ucay Plo9 uoay €A 53 uoay SA £3 Uoay

WA T09L DAd3

TSSL JAd3

Mitigations Disabled
B> Relative Performarice, More ls Better

0.2426 0.4852 07278

1.000

0.9704

OpenBenchmarking arg

1213

Geometric Mean Of All Test Results

Result Composite

M oefault M mitigations=off
P> Geometric Mean, More s Better

ouy-11

8259

6200

osLis-11

8162

81.69

oozz-11

723

oozg-11

1593

ooes-et
£

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, 6
Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and

Yuval Yarom:

Spectre Attacks: Exploiting Speculative Execution.

IEEE Symposium on Security and Privacy (S&P), 2019

2731 cites at Google Scholar 3286% above average of year Last visited: Jan-2024 Paper: DOI

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh, 55
Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg:
: Reading Kernel Memory from User Space.

USENIX Security Symposium, 2018

164 4 cites at Google Scholar 1413% above average of year Last visited: Jan-2024 Paper: DOI

® 13089
z iz
: o
g o=
§
: a0
§
: oot
i
30 60 90 120 150

Meltdown

pwd

Terminal

File Edt View Search Terminal Help
‘nschuarz@labGG:—/Docunentss

Meltdown

Meltdown Root Causes

 Due to the combination of both a hardware and software
optimization
— Out of order execution
— Mapping kernel memory into user space

Recap: 5-stage Pipeline

0Ox4
d
V- we

rsl

rs2
ﬁ addr e rd1
A rdata wdrd2 S AL
GPRs >
Inst. J

Memory IIEmtm D
X

>
ji (A

LT B

I-Fetch ™ Decode, Reg. Fetch®™Execute Memory WWVrite-Back
(IF) (ID) (EX) (MA) (WB)

Recap: 5-stage Pipeline

* In-order execution:
e Execute instructions according to the program order
* What is the ideal instruction throughput? -- instruction per cycle (IPC)

time t0 t1 t2 t3 t4 t5 t6 7
instructionl IFy ID; EX; MA; WB;

instruction?2 IF; ID> EX> MA, WB>

instruction3 IF; ID5 EX3 MAs WBs

instruction4 IF4s IDs EXs4 MAsz WB4
instruction5 IFs IDs EXs MAs WBs

Build High-Performance Processors

S N
///\< \\
Example #1: | Instruction-Level)
(Parallelism (ILP))
FMUL 1, f2, 3 ; 10 cycles z\ N
ADD r4, r4, ril 5 1 cycle -> repeat O = |
. o ¥/\\ /_/

oooooo ~_

when there is no data-dependency or
Example #2: control-flow dependency between
instructions

LD r3, 0(r2) ; 1-100 cycles
ADD r4, r4, r1 ; 1 cycle -> repeat 10 times

Technique #1: Add More Functional Units

ALU " Mem

Ve

F | 1D |— Regs .| WB

Fadd 7_
Fmul

1: FMUL f1, f2, 13

2: ADD r4, r4, ril Fdiv

3: ADD rd, r4, rl

Technique #1: Add More Functional Units

IF

1D

»] Issue

g

2: ADD
3: ADD

r4,

r4,

r4,
r4,

1: FMUL f1, f2, f3

rl
rl

Regs

ALU Mem
Fadd :::::;;;
Frmul /
Fdiv

WB

Technique #1: Add More Functional Units

IF

~

Need a bookkeeping
mechanism to track
dependency

ID

[Issue

Regs

1: FMUL f1, f2, 3 ; f1=F2*f3

2: FDIV 5, f1, f4 ; f5=Ff1/f4

g

ALU Mem
Fadd ::::::;;
Fmul /
Fdiv

WB

Technique #2: Scoreboard

Functional Unit

Busy?

Dest Reg

Srcl Reg

Src2 Reg

Int ALU

Mem

Fadd

Fmul

Fdiv

1: FMUL f1, f2, 3
2: ADD r4, r4, ri

Technique #2: Scoreboard

Functional Unit

Busy?

Dest Reg

Srcl Reg

Src2 Reg

Int ALU

Mem

Fadd

Fmul

f1

f2

f3

Fdiv

1: FMUL f1, f2, 3
2: ADD r4, r4, ri

Technique #2: Scoreboard

Functional Unit | Busy? Dest Reg Srcl Reg Src2 Reg
Int ALU
Mem
Fadd r4 r4 rl
Fmul Y f1 f2 f3
Fdiv

1: FMUL f1, f2, 3
2: ADD r4, r4, ri

Technique #2: Scoreboard

Functional Unit | Busy? Dest Reg Srcl Reg Src2 Reg

Int ALU
Mem
Fadd
Fmul
Fdiv

1: FMUL f1, 2, 3

2: FDIV f5, f1, f4

Technique #2: Scoreboard

Functional Unit | Busy? Dest Reg Srcl Reg Src2 Reg

Int ALU
Mem
Fadd
Fmul Y 1 f2 3
Fdiv

1: FMUL f1, 2, 3

2: FDIV f5, f1, f4

Technique #2: Scoreboard

Functional Unit | Busy? Dest Reg Srcl Reg Src2 Reg

Int ALU

Mem

Fadd

Fmul Y f1 f2 f3
Fdiv Y 5 f1 f4

Data
1: FMUL 1, f2, 13 Hazard!

2: FDIV f5, f1, f4

Technique #2: Scoreboard

Functional Unit | Busy? Dest Reg Srcl Reg Src2 Reg
Int ALU

Mem
Fadd
Fmul
Fdiv

1: FMUL 1, 2, 3 .10 cycles
2: FADD f1, f4, f5 ;4cycles

Technique #2: Scoreboard

e Upon issue of an instruction, check:
1. Whether any ongoing instructions will generate values for my source registers
2. Whether any ongoing instructions will modify my destination register

* We call such a processor: in-order issue, out-of-order completion.

* A problem: how to handle interrupts/exceptions?

Exception in OoO Processors: Example #1

1: LD r3, 0(r2) ; Exception in 3 cycles
2: ADD r4, r4, rl ; 1 cycle Need to delay WB

1 2 3 4 5 6 4 8
o
1:LD IF ID Issue ALU Mem | Mem.| Mem | Exception
2: ADD IF ID Issue ALU WB

Exception in OoO Processors: Example #2

1: FMUL 1, f2, f3 ; 10 cycles

2: LD r3, o(r2) ; Exception in 1 cyclg Need to delay
Exception

1 2 3 4 5 6 ®, 8
®
1: FMUL | |IF ID Issue | FMUL | FMUL | FMUL, FMUL
2: LD IF ID Issue ALU Mem | Exception

Technique #3: In-order Commit

AL 1 M =
U em \\ %
> () i
IF | 1D »| Issue - Commit
a /l 5 In-order
Regs 9
Fmul

Fdiv

Another Way to Draw It

In-order Out-of-order In-order

\ 4

Decode ——» Reorder Buffer Commit

— Tar—T 1 ill /

Kill :

A 4

Fetch

Inject handler PC

Re-examine Examples With In-order Commit

1: LD r3, 0(r2) ; Exception in 3 cycles
2: ADD r4, r4, rl ; 1 cycle

1: FMUL 1, f2, f3 ; 10 cycles
2: LD r3, o0(r2) ; Exception in 1 cycle

Recap: Page Mapping

Process 1

Process 2

4KB

4KB

VA

Page Table
per process

PA

Physical Address Space
(limited by DRAM size)

4KB

Mapping Kernel Pages

Process 1
o Page Table Physical Address Space
per process (limited by DRAM size)
VA
PA
Process 2 4KB
4KB
4KB
Kernel o
4KB .

Jumping Between User and Kernel Space

* Key challenge: need to make sure we use the correct page table
* CR3 (in x86) or satp (in RISCV) stores the page table physical address

<=

Process 1

4KB

<

—
Kernel
4KB ——————

A Performance Optimization

e Context switch overhead:
* Page table changes, so in many processors, we need to flush TLB

* But sometimes, we only go to kernel to do some simple things
* E.g., getpid()

* The optimization: map kernel address into user space in a secure way

Map Kernel Pages Into User Space

Virtual memory A Page Table Entry

Page Table
0x00000000
Kernel pages PPN Permission:
Kernel?
R/W/X?
User pages
OxFFERERee * What will happen if accessing kernel

addresses in user mode?
* Protection fault

Meltdown

* Put two optimizations together, we have Meltdown
e Hardware optimization: out-of-order execution
» Software optimization: mapping kernel addresses into user space

* Attack outcome: user space applications can read arbitrary kernel data

ROB head

y

Ldl: uint8_t secret = *kernel_address; - :
Ld2: unit8 t dummy = probe_array[secret*64]; =

al
Tal

2"d [ine of code can transiently execute before the execption occurs!

Meltdown w/ Flush+Reload

1. Setup: Attacker allocates probe_array, with 256 cache lines.
Flushes all its cache lines

2. Transmit: Attacker executes

Ldl: uint8_ t secret = *kernel_address;
Ld2: unit8 t dummy = probe_array[secret*64];

3. Receive: After handling protection fault, attacker performs cache
side channel attack to figure out which line of probe_array is
accessed =» recovers byte

Meltdown Mitigations

 Stop one of the optimizations should be sufficient

* SW: Do not let user and kernel share address space (KPTI) -> broken by
several groups (e.g., EntryBleed)

* HW: Stall speculation; Register poisoning

Ldl: uint8_t secret = *kernel_address;
Ld2: unit8 t dummy = probe_array[secret*64];

* We generally consider Meltdown as a design bug

 Similar “bugs” followed however
Will Liu, EntryBleed, https://www.willsroot.io/2022/12/entrybleed.html?m=1

http://www.willsroot.io/2022/12/entrybleed.html?m=1

Meltdown Followups

MDS-microarchitectural data sampling
— RIDL

— Cacheout

— Zombieload

* Crosstalk

« Downfall

* Reptar

* LVI-load value injection

LVI

and then they fill it with their secrets

Spectre Variant 1 — Exploit Branch Condition

* Consider the following kernel code, e.g., in a system call

Always malicious?
No. It may be a benign misprediction.

We do not consider Spectre to be a
bug.

Br: if (x < size_arrayl) {

Ldl: secret = arrayl[x] -

Ld2: y = array2[secret*64] ROB head

!

al
Tal
ig

Attack to read arbitrary memory:
1. Setup: Train branch predictor

2. Transmit: Trigger branch misprediction; &arrayl[x] maps to some desired
kernel address

3. Receive: Attacker probes cache to infer which line of array2 was fetched

Spectre Variant 2 — Exploit Branch Target

* Most BTBs store partial tags and targets...
* <last n bits of current PC, target PC>

BTB predicts LD1,
oxfff110 [Br: jmp %eax k//,//’LDZ,”.
Branch targét

buffer (BTB)

A 4

oxfff234 | Ld1l: secret = arrayl[x]

Fetch —— —

Ld2: y = array2[secret*4096]

Train BTB properly =» Execute arbitrary gadgets speculatively

General Attack Schema

Victim

Access secret transmit (secret)

i\ Channel
>

Apply the General Attack Scheme

Which is access

Ldl: uint8 t secret = *kernel address;

Ld2: unit8 t dummy = probe_array[secret*64];

operation?
Which is transmit

Br: if (x < size_arrayl) {
Ldl: secret = arrayl[x]
Ld2: y = array2[secret*64]

operation?

Br:

Ldl:
Ld2:

jmp %eax

secret = arrayl[x]

y = array2[secret*4096]

General Attack Schema

Victim

Access secret transmit (secret)

5 -

* Transient attacks: can leak data-at-rest
« Meltdown = transient execution + deferred exception handling “Easy” to fix

* Spectre = transient execution on wrong paths m

	Slide 1: Comp 790-184: Hardware Security and Side-Channels
	Slide 2: Outline
	Slide 3: Impact
	Slide 4: Meltdown
	Slide 5: Meltdown
	Slide 6: Meltdown Root Causes
	Slide 7: Recap: 5-stage Pipeline
	Slide 8: Recap: 5-stage Pipeline
	Slide 9: Build High-Performance Processors
	Slide 10: Technique #1: Add More Functional Units
	Slide 11: Technique #1: Add More Functional Units
	Slide 12: Technique #1: Add More Functional Units
	Slide 13: Technique #2: Scoreboard
	Slide 14: Technique #2: Scoreboard
	Slide 15: Technique #2: Scoreboard
	Slide 16: Technique #2: Scoreboard
	Slide 17: Technique #2: Scoreboard
	Slide 18: Technique #2: Scoreboard
	Slide 19: Technique #2: Scoreboard
	Slide 20: Technique #2: Scoreboard
	Slide 21: Exception in OoO Processors: Example #1
	Slide 22: Exception in OoO Processors: Example #2
	Slide 23: Technique #3: In-order Commit
	Slide 24: Another Way to Draw It
	Slide 25: Re-examine Examples With In-order Commit
	Slide 26: Recap: Page Mapping
	Slide 27: Mapping Kernel Pages
	Slide 28: Jumping Between User and Kernel Space
	Slide 29: A Performance Optimization
	Slide 30: Map Kernel Pages Into User Space
	Slide 31: Meltdown
	Slide 32: Meltdown w/ Flush+Reload
	Slide 33: Meltdown Mitigations
	Slide 34: Meltdown Followups
	Slide 35: LVI
	Slide 36: Spectre Variant 1 – Exploit Branch Condition
	Slide 37: Spectre Variant 2 – Exploit Branch Target
	Slide 38: General Attack Schema
	Slide 40: Apply the General Attack Scheme
	Slide 41: General Attack Schema
	Slide 42: End slide

