
Comp 790-184:

Hardware Security and Side-Channels

Lecture 3: Transient Execution Attacks

January 30, 2025

Andrew Kwong

Outline

• What are transient execution attacks?

• How does Meltdown work?
• We will connect the dots between a hardware optimization and a software

optimization.

• How do Spectre and its variations work?
• Let’s try to see through these variations and understand the fundamental

problem.
Slides adapted from Mengjia Yan

(shd.mit.edu)

Impact

3

Meltdown

4

Meltdown

5

Meltdown Root Causes

• Due to the combination of both a hardware and software

optimization

– Out of order execution

– Mapping kernel memory into user space

Department Name 6

Recap: 5-stage Pipeline

Write-Back
(WB)

Imm
Ext

we
rs1
rs2

rd1
ws
wdrd2
GPRs

Decode, Reg. Fetch Execute

(ID) (EX)

ALU

Memory
(MA)

wdata

rdata
Data
Memory

we
addr

I-Fetch
(IF)

0x4

Add

addr
rdata

Inst.
Memory

IR
PC

Recap: 5-stage Pipeline

• In-order execution:
• Execute instructions according to the program order

• What is the ideal instruction throughput? -- instruction per cycle (IPC)

.time t0 t1 t2 t3

instruction1 IF1 ID1 EX1 MA1

t4

WB1

t5 t6 t7 . . .

instruction2 IF2 ID2 EX2 MA2 WB2

instruction3 IF3 ID3 EX3 MA3 WB3

instruction4 IF4 ID4 EX4 MA4 WB4

instruction5 IF5 ID5 EX5 MA5 WB5

Build High-Performance Processors

FMUL f1, f2, f3 ; 10 cycles
-> repeat 10 timesADD r4, r4, r1 ; 1 cycle

……

Example #2:

LD r3, 0(r2)
ADD r4, r4, r1
……

; 1-100 cycles
; 1 cycle -> repeat 10 times

Example #1: Instruction-Level

Parallelism (ILP)

when there is no data-dependency or
control-flow dependency between
instructions

Technique #1: Add More Functional Units

1: FMUL f1, f2, f3

2: ADD r4, r4, r1

3: ADD r4, r4, r1

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Regs

Technique #1: Add More Functional Units

IF ID WB

ALU Mem

Fadd

Fdiv

Issue

Regs

Fmul

1: FMUL f1, f2, f3

2: ADD r4, r4, r1

3: ADD r4, r4, r1

7

Technique #1: Add More Functional Units

1: FMUL f1, f2, f3 ; f1=f2*f3

2: FDIV f5, f1, f4 ; f5=f1/f4

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

RegsNeed a bookkeeping
mechanism to track

dependency

Technique #2: Scoreboard

Functional Unit Busy? Dest Reg Src1 Reg Src2 Reg

Int ALU

Mem

Fadd

Fmul

Fdiv

1: FMUL f1, f2, f3

2: ADD r4, r4, r1

Technique #2: Scoreboard

Functional Unit Busy? Dest Reg Src1 Reg Src2 Reg

Int ALU

Mem

Fadd

Fmul Y f1 f2 f3

Fdiv

1: FMUL f1, f2, f3

2: ADD r4, r4, r1

Technique #2: Scoreboard

Functional Unit Busy? Dest Reg Src1 Reg Src2 Reg

Int ALU

Mem

Fadd Y r4 r4 r1

Fmul Y f1 f2 f3

Fdiv

1: FMUL f1, f2, f3

2: ADD r4, r4, r1

Technique #2: Scoreboard

Functional Unit Busy? Dest Reg Src1 Reg Src2 Reg

Int ALU

Mem

Fadd

Fmul

Fdiv

1: FMUL f1, f2, f3

2: FDIV f5, f1, f4

Technique #2: Scoreboard

Functional Unit Busy? Dest Reg Src1 Reg Src2 Reg

Int ALU

Mem

Fadd

Fmul Y f1 f2 f3

Fdiv

1: FMUL f1, f2, f3

2: FDIV f5, f1, f4

Technique #2: Scoreboard

Functional Unit Busy? Dest Reg Src1 Reg Src2 Reg

Int ALU

Mem

Fadd

Fmul Y f1 f2 f3

Fdiv Y f5 f1 f4

1: FMUL f1, f2, f3

2: FDIV f5, f1, f4

Data

Hazard!

Technique #2: Scoreboard

Functional Unit Busy? Dest Reg Src1 Reg Src2 Reg

Int ALU

Mem

Fadd

Fmul

Fdiv

1: FMUL f1, f2, f3

2: FADD f1, f4, f5
11

;10 cycles

;4 cycles

Technique #2: Scoreboard

• Upon issue of an instruction, check:
1. Whether any ongoing instructions will generate values for my source registers

2. Whether any ongoing instructions will modify my destination register

• We call such a processor: in-order issue, out-of-order completion.

• A problem: how to handle interrupts/exceptions?

Exception in OoO Processors: Example #1

1 2 3 4 5 6 7 8

1: LD IF ID Issue ALU Mem Mem Mem Exception

2: ADD IF ID Issue ALU

1: LD r3, 0(r2)

2: ADD r4, r4, r1

; Exception in 3 cycles

; 1 cycle Need to delay WB

WB

Exception in OoO Processors: Example #2

1 2 3 4 5 6 7 8

1: FMUL IF ID Issue FMUL FMUL FMUL FMUL …

2: LD IF ID Issue ALU Mem Exception

1: FMUL f1, f2, f3 ; 10 cycles

2: LD r3, 0(r2) ; Exception in 1 cycle Need to delay
Exception

Technique #3: In-order Commit

IF ID WB

ALU Mem

Fadd

Fdiv

Issue

Regs

Fmul

R
e
o
rd

e
r

B
u
ff
e
r

Commit

In-order

Another Way to Draw It

Fetch Decode

Execute

CommitReorder Buffer

In-order In-orderOut-of-order

Kill
Kill Kill

Exception?Inject handler PC

Re-examine Examples With In-order Commit

1: LD r3, 0(r2)

2: ADD r4, r4, r1

; Exception in 3 cycles

; 1 cycle

1: FMUL f1, f2, f3 ; 10 cycles

2: LD r3, 0(r2) ; Exception in 1 cycle

Recap: Page Mapping

Physical Address Space
(limited by DRAM size)

4KB

VA
PA

Page Table
per process

4KB

4KB

Process 1

Process 2

4KB

Mapping Kernel Pages

Physical Address Space
(limited by DRAM size)

4KB

VA
PA

Page Table
per process

4KB

Process 1

Process 2

4KB
Kernel

4KB

4KB

4KB

Jumping Between User and Kernel Space

• Key challenge: need to make sure we use the correct page table
• CR3 (in x86) or satp (in RISCV) stores the page table physical address

Process 1

4KB

4KB
Kernel

A Performance Optimization

• Context switch overhead:
• Page table changes, so in many processors, we need to flush TLB

• But sometimes, we only go to kernel to do some simple things
• E.g., getpid()

• The optimization: map kernel address into user space in a secure way

Map Kernel Pages Into User Space

• What will happen if accessing kernel
addresses in user mode?

• Protection fault

Kernel pages

0x00000000

0xffffffff

User pages

Page Table
Virtual memory A Page Table Entry

PPN Permission:
Kernel?
R/W/X?

…LD
1

LD
2

…

• Put two optimizations together, we have Meltdown
• Hardware optimization: out-of-order execution

• Software optimization: mapping kernel addresses into user space

• Attack outcome: user space applications can read arbitrary kernel data

Meltdown

……
Ld1: uint8_t secret = *kernel_address;
Ld2: unit8_t dummy = probe_array[secret*64];

ROB head

2nd line of code can transiently execute before the execption occurs!

Meltdown w/ Flush+Reload

1. Setup: Attacker allocates probe_array, with 256 cache lines.
Flushes all its cache lines

2. Transmit: Attacker executes

3. Receive: After handling protection fault, attacker performs cache
side channel attack to figure out which line of probe_array is
accessed➔ recovers byte

……
Ld1: uint8_t secret = *kernel_address;
Ld2: unit8_t dummy = probe_array[secret*64];

Meltdown Mitigations

• Stop one of the optimizations should be sufficient
• SW: Do not let user and kernel share address space (KPTI) -> broken by

several groups (e.g., EntryBleed)

• HW: Stall speculation; Register poisoning

• We generally consider Meltdown as a design bug
• Similar “bugs” followed however

……
Ld1: uint8_t secret = *kernel_address;
Ld2: unit8_t dummy = probe_array[secret*64];

Will Liu, EntryBleed, https://www.willsroot.io/2022/12/entrybleed.html?m=1

http://www.willsroot.io/2022/12/entrybleed.html?m=1

Meltdown Followups

• MDS-microarchitectural data sampling

– RIDL

– Cacheout

– Zombieload

• Crosstalk

• Downfall

• Reptar

• LVI-load value injection

Department Name 34

LVI

35

Spectre Variant 1 – Exploit Branch Condition

• Consider the following kernel code, e.g., in a system call

Br: if (x < size_array1) {

Ld1:

Ld2:

secret = array1[x]

y = array2[secret*64]

}

Attack to read arbitrary memory:
1. Setup: Train branch predictor
2. Transmit: Trigger branch misprediction; &array1[x] maps to some desired
kernel address
3. Receive: Attacker probes cache to infer which line of array2 was fetched

…B
r

LD
1

LD
2

…

Always malicious?
No. It may be a benign misprediction.
We do not consider Spectre to be a
bug.

ROB head

Spectre Variant 2 – Exploit Branch Target

Br: jmp %eax

…

…

Ld1: secret = array1[x]

Ld2: y = array2[secret*4096]

• Most BTBs store partial tags and targets…
• <last n bits of current PC, target PC>

Branch target
buffer (BTB)

Fetch ……

Train BTB properly➔ Execute arbitrary gadgets speculatively

oxfff110

oxfff234

BTB predicts LD1,

LD , …

General Attack Schema

AttackerVictim

Access secret transmit (secret) recv()
Channel

Apply the General Attack Scheme

Which is access
operation?

Which is transmit
operation?

……
Ld1: uint8_t secret = *kernel_address;
Ld2: unit8_t dummy = probe_array[secret*64];

Br: if (x < size_array1) {

Ld1:

Ld2:

secret = array1[x]

y = array2[secret*64]

}

Br: jmp %eax

…

…

Ld1: secret = array1[x]

Ld2: y = array2[secret*4096]

General Attack Schema

• Transient attacks: can leak data-at-rest
• Meltdown = transient execution + deferred exception handling

• Spectre = transient execution on wrong paths

“Easy” to fix

Hard to fix

AttackerVictim

Access secret transmit (secret) recv()
Channel

	Slide 1: Comp 790-184: Hardware Security and Side-Channels
	Slide 2: Outline
	Slide 3: Impact
	Slide 4: Meltdown
	Slide 5: Meltdown
	Slide 6: Meltdown Root Causes
	Slide 7: Recap: 5-stage Pipeline
	Slide 8: Recap: 5-stage Pipeline
	Slide 9: Build High-Performance Processors
	Slide 10: Technique #1: Add More Functional Units
	Slide 11: Technique #1: Add More Functional Units
	Slide 12: Technique #1: Add More Functional Units
	Slide 13: Technique #2: Scoreboard
	Slide 14: Technique #2: Scoreboard
	Slide 15: Technique #2: Scoreboard
	Slide 16: Technique #2: Scoreboard
	Slide 17: Technique #2: Scoreboard
	Slide 18: Technique #2: Scoreboard
	Slide 19: Technique #2: Scoreboard
	Slide 20: Technique #2: Scoreboard
	Slide 21: Exception in OoO Processors: Example #1
	Slide 22: Exception in OoO Processors: Example #2
	Slide 23: Technique #3: In-order Commit
	Slide 24: Another Way to Draw It
	Slide 25: Re-examine Examples With In-order Commit
	Slide 26: Recap: Page Mapping
	Slide 27: Mapping Kernel Pages
	Slide 28: Jumping Between User and Kernel Space
	Slide 29: A Performance Optimization
	Slide 30: Map Kernel Pages Into User Space
	Slide 31: Meltdown
	Slide 32: Meltdown w/ Flush+Reload
	Slide 33: Meltdown Mitigations
	Slide 34: Meltdown Followups
	Slide 35: LVI
	Slide 36: Spectre Variant 1 – Exploit Branch Condition
	Slide 37: Spectre Variant 2 – Exploit Branch Target
	Slide 38: General Attack Schema
	Slide 40: Apply the General Attack Scheme
	Slide 41: General Attack Schema
	Slide 42: End slide

