Comp 790-184:
Hardware Security and Side-Channels

Outline

* Hardware Security Modules (HSM)
* real-world security needs hardware support in addition to crypto
* Crypto background

* Design considerations and tradeoffs when designing hardware
security modules

* Talk about real world-impact

Secure Processors/HSM

1967

Multics OS introduces
protection rings and invents
the notion of privileges

1961
Burroughs B5000
introduces a tag bit to

distinguish control words
from numeric words

1964
IBM System/360 uses 4-bit
memory protection keys

1969
Burroughs B6500 extends
tags to be three bits longs

1970
1BM System/370 supports
alock & key mechanism

1969
Tenex supports full
virtual memory

for memory accesses

1980 1981
Berkeley RISC Stanford MIPS
project begins

project begins

1979

DEC allows user and

kernel code to share

same address space in
RSTS/E OS

1978

Intel 8086 introduced.
Includes notion of
privilege rings

1981

Intel IAPX 432 introduces
hardware and microcode support ~ ARM introduces TrustZone, a Trusted Execution
for object-oriented programming
and capability-based addessing

2002

1BM ThinkPad T30 adheres:
to TPM (Trusted Platform
Module) standard, giving
hardware support for
attestation and key storage

2005 2012
Intel and AMD add hardware Intel adds support for SMAP 2015
support for virtualizati (Supervisor Mode Access F Intel i MPX (Memory

2011
Intel adds support for SMEP
(Supervisor Mode ion F

1997
IBM 4758 introduces hardware |
security module for

cryptographic computation

2010
Intel adds hardware-
accelerated support
for AES encryption

2000
AMD adds support for NX "no-
execute" bit in x86-64 ISA

2002

2012

Intel adds support
for random number
generation with the

Environment (TEE) intended for isolated execution
and DRM (Digital Rights Management) support

Figure 1: Sixty years of hardware support for security

[Protection) ISA extensions to
support runtime pointer bounds
checking

2016

AMD provides hardware

accelerated virtual machine

encryption with SEV (Secure

Encryption Virtualization)

2016
AMD introduces SME (Secure
Memory Encryption),
hardware accelerated support
for encrypt system memory

2015 |

Intel introduces SGX (Software
Guard) ISA extensions, which
give users the ability to execute
code in secure "enclaves”

RDRAND instruction

Apple
Secure
Enclave

http://www.cs.columbia.edu/%7Esimha/ch1_supplement.pdf

Security Contexts #1

 Software can be buggy (or
sometimes malicious)

* Running daily applications
together with security-sensitive
S (E (N (D (H (E (L (P (P (L \E{ASE/™> applications

= C' Q You have too many tabs open.

e Can we do better than
software-based isolation?

Before IBM 4758 (1999)

* Crypto Accelerators
 Better performance
e Simple functionality
* Narrow interface

RN
nnnnna Crypto
CPU ASIC

|AESI RSAI etc.|

IBM 4758 (1999) -- 4765 (2012)

Stores the firmware
* Goal: a programmable, secure co-processor. and secret keys

* High level idea: virtual locker room l

i e Battery- o
sensing Sl DRAM ba_d_(ed RgsM'
and PC support RAM

response

! !
v I I Hardware locks |

| |
| |
- - ! !
- - ! ! I v v
|]) Data

Routing L ;
- - TITIL control [e Toiowy | Reakme

«— 3 Modular generator CHCK
ARRR L Programmable F':’ math I
Physical security boundary
CP U SeCU re = PCl bus interface =

3

- Host PCl bus |

Software Layer Design and Concerns

* Use cases:
 Solve music/software piracy issue

* Runan SSL server inside to store the
agreed symmetric session keys

Why this is more secure?

* Physical isolation (Not share physical
memory)

* Narrow interface, only interact with external
worlds via APIs (keys do not leave the co-
processor)

* Simpler software on co-processor, so fewer
bugs (maybe can be formally verified)

* Problems?

* Updating software is hard
e Hard to program

TIRNL
CPU

Innnnn
Programmable

Secure
Co-processor

L g

Trusted Platform Module (TPM)

* “Commoditized |IBM 4758”: Standard LPC
interface attaches to commodity motherboards

Platform Attestation
Non-Volatile
Configuration Identity

Register (PCR) Key (AIK)

Storage

Random

Communications

Number
Engine ll Generation @l Engine
Generator

Trusted Platform Module (TPM)

Tamper-Protected Packaging

https.//scotthelme.co.uk/upgrading-my-pc-with-a-tpm/

Trusted Platform Module (TPM)

e Standard LPC interface — attaches to
commodity motherboards

* Weaker computation capability

" Use cases: - W
* Disk encryption and password protection 3 il et
(“seal”) §
* Verify platform integrity (firmware+0OS) § =
Generator Engine § Generation @ Engine
Trusted Platform Module (TPM)

Tamper-Protected Packaging

Apple Secure Enclave

* Additional Goals:
* Prevent jailbreak
* Easy to use

* Advantage: one company
controls both the hardware
and the software

Advanced power
management

High-bandwidth
caches

Cryptography
acceleration

High-performance
unified memory

Machine learning
accelerators

High-efficiency High-performance Secure

CPU cores CPU cores

Advanced
display engine

HDR video
processor

Enclave

M1

Always-on
processor

High-quality image Low-power
signal processor design

High-performance
NVMe storage

Low-power video
playback

High-performance
GPU

High-performance
video editing

Thunderbolt / USB 4
controller

High-efficiency audio
processor

Neural Engine

HDR imaging

Gen 4 PCI
Express

Performance
controller

Advanced
silicon
packaging

Separate Cores

!

Memory controller
A

NAND flash controller w——————————-=>p

Application Processor t

Similar to IBM 4758 A5 angine

e Strongisolation 4
* Block vulnerabilities due to software

. ?

bugs and side channels -

\/

' s

TRNG
Different from IBM 4758
Secure Enclave v
* Not general-purpose, only run secure AES Engine —
i i Secure Enclave -—> em°l'n if:;emlon
enclave functionality) Processor Eng

Secure Enclave

System on chip

Secure Nonvolatile Storage

The Trends (isolation with some sharing?)

Ring 3
CPU Core A
Co-processor
Normal World (REE) Secure World (TEE) ﬁ Registers
(R ™ N
M . TZASC @H DRAM)

i user mode: Aop || user mode: Ring 0
’ P |L__TeEson Guest OS
- | TZMA @H SRAM Guest OS
1 e . ' kernel mode:
|| kernel mode: OS |} TEE-kernel <::>

hyp mode:
Hypervisor

. L\ 1
i) Ring -1 Hypervisor \ \ \
A ¥

% Jeo el e '
RNG || Peripherals .

smc l 1smc i Ri ng -2 SM \

; : GIC

monitor mode: Secure Monitor Mode “ [] Secure world

v [Normal world Ha rdwa re

ARM TrustZone Intel SGX model

TG 00

Security? Usability?
>

Fixed Design (Static) Flexible Design (Dynamic)

Security Contexts #2

* Disk lost or removed, leading to
confidentiality leakage.

e Data encryption with weak
passwords, such as, 6-digit passcode.

Bind data/application with
hardware using crypto.

Security Properties and Crypto Primitives

* Confidentiality

* Symmetric Q< S "

e Asymmetric Alice Bob

* Integrity
Mallory

* Freshness

Symmetric Cryptography

Secret

A4$h*L@9.
T6=#/>B#1
R06/J2.>1L
1PRL39P20

Plain Text Cipher Text

Secret
Key

Plain Text

°pad (OTP)

Encryption:
ciphertext = key @ plaintext
Decryption:
plaintext = key @ ciphertext

How about encrypting arbitrary length message? Are there any problems?

Block ciphers (e.g., DES, AES)

* Divide data in blocks and encrypt/decrypt each block

* AES block size can be 128, 192, 256 bits
ECB IS NOT

RECOMMENDED

Plaintext Plaintext Plaintext
(EENNEEENERNEE] CITTITTTTTTT TTTTTTTTTT
block cipher block cipher block cipher
Key encryption Key encryption Key encryption
ITTTITTTITT OTTITTTTTTT ITTTTTTTTTT
Ciphertext Ciphertext Ciphertext
Electronic Codebook {ECB) mode encryptinn Qriginal image Encrypted using ECE mode Mesothr than

pseudo-randomness

Other block cipher modes

Plaintext Plaintext Plaintext
[ENNEEENNEEEEE| [ENNEEEEEEEEEE| [ENNNEENEEEEEE]
Initialization Vector (IV)
OO ——@ — —
Key block C|p_her Key block C|p_her Key block C|p_her
encryption encryption encryption
[NENENENNENEEE| OTTTTITTIT1T] OTITTITTTTI1]
Ciphertext Ciphertext Ciphertext

Cipher Block Chaining (CBC) mode encryption

Counter (CTR) mode encryption

IV can be public, but need to ensure to not reuse IV for the same key.

Real-world application: file/disk encryption and memory encryption.

How do we exchange the shared key between two parties?

Nonce Counter Nonce Counter Nonce Counter
c59bcf35.. 00000000 c59bcf35.. 00000001 c59bcf35... 00000002
OTTTTTTTT1TM OTITTTTI71T OTTTTTTTT1TM
Key block C|p_her Key block apher Key block C|p_her
encryption encryption encryption
Plaintext —»? PIaintext—»? PIaintext—»?
[ITTITTITTI1] [IITTITTTTTT] [IITTITTTTTT]
[IITTITTTTTT] [IITTITTITTT] [IITTITTTTTT]
Ciphertext Ciphertext Ciphertext

Apple Secure Enclave

Advanced power High-efficiency High-performance Secure Low-power video Neural Engine
management CPU cores CPU cores Enclave playback

Advanced High-performance

High-bandwidth display engine GPU

caches HDR imaging
HDR video
processor

Cryptography

acceleration n Gen4 PCl
Express

High-performance

video editing
High-performance Always-on Performance
unified memory processor controller

Thunderbolt / USB 4
controller

Machine learning High-quality image Low-power High-gerformance High-efficiency audio Advanced
accelerators signal processor design NVMe storage processor silicon
packaging

NAND flash storage DRAM

Crypto Keys !

Memory controller
A

NAND flash controller w——————————-=>p

Application Processor t
AES engine —p

The Secure Enclave includes a unique ID
(UID) root cryptographic key.

\ 4

' s

P —

* Unique to each device

* Randomly generated 16N
* Fused into the SoC at manufacturing time SO '
. . . . AES Engine
* Not visible outside the device secocave 4 Mo prtctr
PKA

6 =

Secure Enclave

System on chip

Secure Nonvolatile Storage

Secure Non-volatile Storage

!

Memory controller
A

NAND flash controller w——————————-=>p

Application Processor t

For easy to use: short passcode. But e
weaker security?

\ 4

' s

P —

Passcode + UID -> passcode entropy

raNG
Brute-force has to be performed on the

device under attack (can’t create a copy RS e’ I Memory,,.,:tecﬁon
of the software and brute-force in i Proceser —
parallel)

6 =

Secure Enclave

e Escalating time delays
* Erase data when exceeding attempt
CO u nt Secure Nonvolatile Storage

System on chip

Real-world use case

The lﬁﬁﬁigton Post | b

—

gh‘-ﬁnul_lnrk Cimes

—?fppk’:lﬂzri Cg‘:ﬁfm’:: §'\{h}, the fight between Apple and _
oLl bhie

the FBI is just gelling started

— . T | =
_fos Angeles Times .

Apple wants the FBI to reveal how it hacked 5

the San Bernardino killer's iPhone

|

— MR RN G

CBSTHIS | APPLE-FBI STANDOFF

MORNING 1e35E 755D AS TENSIONS LINGER OVER KILLER'S FHONE g >

Security Contexts #3 Hardware establishes
root of trust.

a) Aremote server wants to trust an end-user,

e.d., when joining a company’s highly- jm| AN &
secure network. 0 w

b) An end-user wants to trust a remote server, = J
e.g., bank server r

c) rootkits? Are you sure you are running your &
trusted OS?

Asymmetric Cryptography (e.g., RSA)

* A pair of keys:
* Private key (Kprivate — kept as secret)
* Publickey (Koup1ic — safe to release publicly)

I

* Computation:

. . Mail box is public;
* Encrypt (plaintext, Kpyiic) = Clphertext

Box key is private
* Decrypt (ciphertext, Kprivate) = plaintext

e Computationally more expensive, so usually use asymmetric cryptography to
negotiate a shared key (e.g., DKE key exchange), then use symmetric cryptography

 How do we announce and obtain the public key?

Public Key Infrastructures (PKis)

* Bob has a private key Ky;5vate and
wants to claim he corresponds to a

pUbliC key Kpublic

* Analogy: public key is like a
government-issued ID, need to be
validated by an authority.

What is Bob’s
public key?

Certificate
Authority

Public Key Infrastructures (PKis)

* Bob has a private key K, iyate and
wants to claim he corresponds to a

pUinC key Kpublic

* Analogy: public key is like a
government-issued ID, need to be
validated by an authority.

e Establish a chain of trust

* Real-world use cases: identify website,
identify hardware chips/processors

Certificate
Authority

Bob’s public key

iS Kpublic

Sign using the
CA’s private key

O O
i i
Alice Bob

Integrity (MAC/Signature)

Hash(m) = h

/ \ Use as fingerprints

Hash value (length
depends on algorithm)

Message (long)

* Hash: one-way function
* Practically infeasible to invert, and difficult to find collision

 Avalanche effect
* “Bob Smith got an A+ in ELE386 in Spring 2005”—> 0leace851b72386c46
e “Bob Smith got an B+ in ELE386 in Spring 2005”-> 936£8991clll1f2cefaw

Integrity + Crypto

* Using symmetric crypto:
* hash = SHA (message)
* HMAC = enc (hash, key)

* Using asymmetric crypto:

* Sign: sig = dec (hash, Kgrivate)

* Verify:

¢ ver = eﬂC(Sig/ Kpublic)

X Certificate
w Authority

2
Bob’s public key

IS Kpublic Sign using the

CA's private key

Alice Bob

Boot Process (UEFI) Root of trust

Security (SEC) «— Cache-as-RAM

7 microcode
MEASUIES - - - — oo oo

k, y firmware

Pre-EFI Initialization (PEI) «— DRAM Initialized

—
measures i

S

Driver eXecution Environment (DXE)

P
measures

\\» Y

Boot Device Selection (BDS)

|

meas\ures y bootloader
Transient System Load (TSL)

Y
MEASUIES === oo oo oo oo e oo

S Y OS

Run Time (RT)

How does it perform the measurement?

Secure Boot using TPM

0 (zero)

TPM MR
after reboot

Boot Loader

|SHA—1(|

TPM MR when
boot loader
executes

sent to TPM

Kernel module |

[|)]
OS kernel sent to TPM
executes
[|)]
TPM MR when

Kernel Module executes

TPM + firmware

l 3. load

Boot Loader

l

OS kernel

l

Each step, TPM compares to expected values
locally or submitted to a remote attestor.

2. Report (extend)

1. Measure
(hash)

Security Problems of Using TPM EEE e e

Security (SEC) —’4— Cache-as-RAM
microcode

L

* Not easy to use with frequent

measures 1

firmware
Softw a re / ke rn e I u p d ate j Pre-EFI Initiallization (PEI) DRAM Initialized
[] Ti m e Of C h e C k’ t i m e Of u Se ::] Driver eXecution Iinvironment (DXE) l
° T P M Re Set atta C kS ::] Boot Device Slelection (BDS) ‘
meagures v bootloader
» exploiting software vulnerabilities and j T e oo T
using software to report false hash values B .
innnnn
- - nEEERE
Han et al. A Bad Dream: Subverting Trusted Platform Module While You Are Sleeping. - - E
Usenix Security’18 Wojtczuk et al. Attacking Intel TXT® via SINIT code execution : : [TTTIT]
hijacking. 2011
nEEnng TPM

Open-source Choice: Google Titan

PCH/BMC

Boot FW
flash

Chipset

Storage and
networking
subsystem

Reset and
power control

Memory
subsystem

from https.//www.hotchips.org/hc30/1conf/1.14_Google Titan GoogleFinalTitanHotChips2018.pdf

http://www.hotchips.org/hc30/1conf/1.14_Google_Titan_GoogleFinalTitanHotChips2018.pdf

Secure Boot with Secure Enclave

Similar to TPM but with more constraints

e Each step is signed by Apple to prevent

loading non-Apple systems
e Using Apple Root Certificate
authority public key

* Verify more components, including
operating system, kernel extensions, etc.

* Keep track of version number to prevent
rolling back to older/vulnerable versions

Boot ROM validates LLB signature

!

LLB validates system-paired
firmware signatures

l Secure Enclave Boot
Secure Enclave ROM fetches
signed —_ LLB validates LocalPolicy signature = <= LocalPolicy
LocalPolicy 1 nonces from Secure
Storage Component

LLB evaluates iBoot stage 2 signature
according to LocalPolicy

!

iBoot stage 2 validates macOS-paired
firmware, Boot Kernel Collection,
Auxilary Kernel Collection (if applicable),
system trust cache, and signed system
volume signatures, according
to LocalPolicy

'

macOS

What Can Hardware Security Modules Offer?

* Physical isolation
* Bind data and applications with the hardware device
e Establish root of trust

* More efficient than doing with crypto alone

	Comp 790-184:�Hardware Security and Side-Channels��
	Outline
	Secure Processors/HSM
	Security Contexts #1
	Before IBM 4758 (1999)
	IBM 4758 (1999) -- 4765 (2012)
	Software Layer Design and Concerns
	Why this is more secure?
	Trusted Platform Module (TPM)
	Trusted Platform Module (TPM)
	Apple Secure Enclave
	Separate Cores
	The Trends (isolation with some sharing?)
	Security?
	Security Contexts #2
	Security Properties and Crypto Primitives
	Symmetric Cryptography
	Block ciphers (e.g., DES, AES)
	Other block cipher modes
	Apple Secure Enclave
	Crypto Keys
	Secure Non-volatile Storage
	Real-world use case
	Security Contexts #3
	Asymmetric Cryptography (e.g., RSA)
	Public Key Infrastructures (PKIs)
	Public Key Infrastructures (PKIs)
	Integrity (MAC/Signature)
	Integrity + Crypto
	Boot Process (UEFI)
	Secure Boot using TPM
	Security Problems of Using TPM
	Open-source Choice: Google Titan
	Secure Boot with Secure Enclave
	What Can Hardware Security Modules Offer?
	End slide

