Comp 790-184: Hardware Security and Side-Channels

Lecture 6: Rowhammer

March 4, 2025 Andrew Kwong

Slides adapted from Mengjia Yan (shd.mit.edu)

How DRAM works

Rowhammer

Why Should we Care About RowHammer?

- One can predictably induce bit flips in commodity DRAM chips
- An example of how a simple hardware failure mechanism can create a widespread system security vulnerability

Outline

- Why does RowHammer happen? What is its working mechanism?
- How to perform the attack in practice? Challenges?
- Attack consequences? Mitigations?

DRAM Basics

- Each bit in DRAM is stored in a "cell" using a capacitor
- Read is destructive
- DRAM cells lose their state over time (hence **Dynamic** RAM)
- Data stored in DRAM cells needs to be "refreshed" at a regular interval

DRAM Basics

- Each bit in DRAM is stored in a "cell" using a capacitor
- Read is destructive
- DRAM cells lose their state over time (hence Dynamic RAM)
- Data stored in DRAM cells needs to be "refreshed" at a regular interval

Why do we widely use DRAM given some of its unappealing properties?

- Speed
- (2-10x slower than SRAM)
- Density
- (20x denser than SRAM)

- Cost

(~100x cheaper per MB)

https://www.electronics-notes.com/articles/electronic_components/semiconductor-ic-memory/dynamic-ram-how-does-dram-work-operation.php

DRAM Architecture

DRAM Refresh

- How do we refresh?
- Performance penalty of refresh
 - In an 8Gb memory, upwards of 10% of time is spent in refresh!
- The common refresh interval: **64ms**

Aside: Cold Boot Attacks

	Seconds	Error % at	Error %
	w/o power	operating temp.	at −50°C
SDRAM (1999)	60	41	(no errors)
(1555)	300	50	0.000095
DDR (2001)	360	50	(no errors)
	600	50	0.000036
DDR (2003)	120	41	0.00105
	360	42	0.00144
DDR2 (2007)	40	50	0.025
[80	50	0.18

Halderman et al.; Lest We Remember: Cold Boot Attacks on Encryption Keys; USENIX Security'08

See RowHammer Again

Observation: Repeatedly accessing a row enough times **between refreshes** can cause disturbance errors in nearby rows

Infrastructures to Understand Rowhammer

Kim et al; Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors; ISCA'14

Most DRAM Modules Are Vulnerable

(37/43)

Up to

1.0×10⁷ errors

(45/54)

Up to

2.7×10⁶ errors

(28/32)

Up to

3.3×10⁵ errors

RowHammer Characteristics

- Highly local nature of the bit-flipping capability
- Bit flips are reproducible
- The probability of bitflips are data-dependent

	Solid	~Solid	
	111111	000000	
	111111	000000	
	111111	000000	
T	111111	000000	

Study RowHammer Characteristics

- Highly local nature of the bit-flipping capability
- Bit flips are reproducible
- The probability of bitflips are data-dependent

More advanced DRAM technologies suffer more from this disturbance effect

Density Trends

- As DRAM gets physically denser, it becomes even more vulnerable!
 - Trend continues with DDR4

 Only a few thousand hammer iterations are required on modern DRAM to cause a bit-flip

Density Trends

Denser DRAM also can result in flips in rows which are not *directly* adjacent to the attacker

Why Is Rowhammer Happening?

- DRAM cells are too close to each other
 - They are not electrically isolated from each other

- Access to one cell affects the value in nearby cells
 - Due to electrical interference between the cells and wires used for accessing the cells
 - Also called cell-to-cell coupling/interference
- Example: When we activate (apply high voltage) to a row, an adjacent row gets slightly activated as well
 - Vulnerable cells in that slightly-activated row lose a little bit of charge
 - If row hammer happens enough times, capacitor's charge in such cells gets drained

RowHammer Attacks in Practice

Aggressor Row = Hammered Row

Challenges:

- 1. How to hammer? Need to access aggressor row enough times between refreshes.
- 2. Address mapping. How can we find addresses that map to neighboring rows?
- 3. How do we map victim's data to vulnerable cells?

Hammer Attempt #1: repeat accesses

No. Because we will hit the cache.

Hammer Attempt #2: use clflush

No. Because we will hit the row buffer.

Hammer Attempt #3: force row open/close


```
loop:
   mov (A), %eax
   mov (A_dummy), %ecx

clflush (A)
   clflush (A_dummy)

mfence
   jmp loop
```

"Single-Sided" Rowhammer


```
loop:
   mov (A), %eax
   mov (A_dummy), %ecx

clflush (A)
   clflush (A_dummy)

mfence
   jmp loop
```

"Double-Sided" Rowhammer

- Increase the stress:
- Repeatedly accessing both adjacent rows dramatically increases the error rate of the victim row

Challenge #2: DRAM Addressing

DRAM Organization: Top-down View

DRAM Organization: Top-down View

Channel -> DIMM -> Rank -> Bank -> Row/Column

Reverse Engineer the Mapping

- Approach #1: Physical Probe
- Approach #2: Timing Side Channel via Row Buffer

Address Mapping Examples

Rowhammer Attacks

Native Client (NaCl) Sandbox Escape

- NaCl is a sandbox for running native code (C/C++)
- Runs a "safe" subset of x86, statically verifying an executable
- Use bit flips to make an instruction sequence unsafe!

Example "Safe" Code:

Native Client (NaCl) Sandbox Escape

We can flip bits to allow for (unsafe) non 32-byte-aligned jumps!

Exploited "Safe" Code:

```
andl $~31, %ecx // Truncate address to 32 bits
// and mask to be 32-byte-aligned.
addq %r15, %rax // Add %r15, the sandbox base address.
jmp *%rax // Indirect jump.
```

Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn and Dullien)

Kernel Privilege Escalation

What could happen if a user could gain direct write access to a page table?

Figure 5-21. 4-Kbyte PTE—Long Mode

Other Attacks

- Virtual machine takeover
 - Use page de-duplication to corrupt host machine
- OpenSSH attacks
 - Overwrite internal public key with attacker controlled one
 - Read private key directly (RAMBleed)
- Drammer
 - Rowhammer privilege escalation on ARM
 - Utilizes determinism in page allocation to target vulnerable DRAM rows
- Rowhammer.js
 - Remote takeover of a server vulnerable to rowhammer

Without memory integrity, any software-based security mechanism is insecure!

Rowhammer Mitigations?

cost Manufacturing "better" chips Performance, power Increasing refresh rate **Error Correcting Codes** cost, power Targeted row refresh (TRR) - Used in DDR4! cost, power, complexity Retiring vulnerable cells cost, power, complexity Static binary analysis security User/kernel space isolation in physical memory

Error Correcting Codes (ECC)

- Basic Idea: Store extra redundant bits to be used in case of a flip!
- Naive Implementation: Store multiple copies and compare
- Actual Implementation: Hamming codes

Hamming codes allow for *single-error* correction, double error detection (aka **SECDED**)

How about more than 2-bit flips?

Takeaways

Reliability Concerns Security Implications

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL